[1] 蔡旭旦, 毛丽娟, 张蓓, 等.2021.跨项目运动员越野滑雪长期训练运动能力变化——基于运动机能监控的研究.体育科学 41:3-13. (Cai X. D., L. J. Mao, B. Zhang, et al. 2021. The Development of Physical Capacity of Talent-Transferring Athletes in Long Term Cross-Country Skiing Training —Based on Sports Physiological Evaluations.,China Sport Science 41:3-13.)
[2] 曹武警.2019.步态自适应仿生膝关节假肢系统建模及智能控制方法研究. (Cao W. J. 2019. Research on Modeling and Intelligent Control Mechod for Prosthesis System with Gait Adaptive Bionic Knee,Shanghai University of Technology.)
[3] 陈胜利, 张立.2011.表面肌电信号分析评价肌肉疲劳的有效性和敏感性.武汉体育学院学报 45:71-77. (Chen S. L. and L. Zhang 2011. Efficiency and sensitivity of assessment of muscle fatigue by utilizing sEMG parameters.,Journal of Wuhan Institute of Physical Education 45:71-77.)
[4] 褚子雯.2020.不同负重深蹲练习髋膝踝关节力量的理论计算与变化特征分析. (Chu Z. W. 2020. Theoretical calculation and variation analysis of hip, knee and ankle joint strength in different load squats,Wuhan Institute of Physical Education.)
[5] 范洪彬, 孙有平, 季浏.2016.基于表面肌电贡献率的上肢不同力量素质指标年龄、性别通用性研究.中国体育科技 52:83-97. (Fan H. B., Y. P. Sun, L. Ji 2016. Age and Gender Universality Research on Different Upper Limbs Strength Indicators in physical Fitness Test Based Surface Electromyography Muscular Contribution,China Sport Science and Technology 52:83-97.)
[6] 冯勇, 周皓, 汪爱媛.2020.臀大肌及臀中肌功能与下肢应力性骨折的相关性分析.第十三届全国生物力学学术会议论文摘要汇编. (Feng Y., H. Zhou, A. Y. Wang 2020. Correlation between gluteus maximus and gluteus medius muscle function and stress fracture of lower limbs,Proceedings of 13th National Conference on Biomechanics.)
[7] 高辉, 王晨艳, 李志, 等.2021.不同屈曲状态下固定轴和移动轴膝关节胫-股关节的生物力学变化.太原理工大学学报 52:144-150. (Gao H., C. Y. Wang, Z. Li, et al. 2021. Biomechanical Changes of the Tibial-femoral Joint of the Knee Joint with Fixed and Moving Axes Under Different Flexion States.,Journal of Taiyan University of Technology 52:144-150.)
[8] 郭峰, 张日辉.2009.优秀女子拳击运动员后手直拳技术动作上肢肌肉表面肌电分析.沈阳体育学院学报 28:65-68. (Guo F. and R. H. Zhang 2009. Surface Electromyography of Upper Extremity Muscles for Elite Female Boxers Straight Punches,Journal of Shenyang Sport University 28:65-68.)
[9] 郭建峤, 王言冰, 田强, 任革学, 胡海岩.2022.人体肌骨的多柔体系统动力学研究进展.力学进展 52(2): 253-310. (Guo J. Q., Y. B. Wang, Q. Tian, G. X. Ren, and H. Y. Hu, 2022. Advances in flexible multibody dynamics of human musculoskeletal systems,Advances in Mechanics 52(2): 253-310.)
[10] 黄琳, 蔡莉, 君洪梅, 等.2021.表面肌电图监测在脑炎后遗症儿童康复策略制定中的临床价值.中国优生与遗传杂志 29:398-401. (Huang L., L. Cai, H. M. Jun, et al. 2021. Guiding significance and clinical value of surface electromyography monitoring in the development of rehabilitation strategies for children with encephalitis sequelae,Chinese Journal of Eugenics and Genetics 29:398-401.)
[11] 霍波, 蒋量, 孙青, 等.2022a.冰雪运动对运动生物力学基础研究和应用技术的挑战.北京体育大学学报 45(01):45-55. (Huo B., L. Jiang, Q. Sun, et al. 2022a. Challenges Posed by Winter Sports to the Fundamental Research on Biomechanics and Applied Technologies,Journal of Beijing Sport University 45(01):45-55.)
[12] 霍波, 黄毅, 蒋量, 等.2022b.冬季运动项目训练智能管理系统.实验技术与管理 39:6-11. (Huo B., Y. Huang, L. Jiang, et al. 2022b. Intelligent management system for winter sports training,Experimental Technology and Management 39:6-11.)
[13] 靳少康.2021.基于可穿戴传感的跌倒检测研究. (Jin S. K. 2021. Research on fall detection based on wearable sensor,Hebei University.)
[14] 李翰君, 刘卉, 张新, 于冰.2014.基于肌电和优化方法的关节肌力分布模型.中国运动医学杂志 32:981-987. (Li H. J., H. Liu, X. Zhang, B. Yu 2014. EMG-Driven Optimized Muscle Force Distribution Model,Chinese Journal of Sports Medicine 32:981-987.)
[15] 李翰君, 刘嘉, 叶奎刚, 于冰, 刘卉.2020.速度节奏对链球成绩的影响:优秀运动员案例研究.北京体育大学学报 43:108-115. (Li H. J., J. Liu, K. G. Ye, B. Yu, H. Liu 2020. The Impact of Speed Rhythm on Hammer Throw Distance: A Case Study of an Elite Athlete,Journal of Beijing Sport University 43:108-115.)
[16] 刘卉, 李翰君, 曲毅, 等.2021a.无反光点人体运动自动捕捉人工智能系统的有效性.北京体育大学学报 44:125-133. (Liu H., H. J. Li, Y. Qu, et al. 2021a. Validity of an Artificial Intelligence System for Markerless Human Movement Automatic Capture,Journal of Beijing Sport University 44:125-133.)
[17] 刘卉, 于冰, 张力文, 吴海军.2021b.竞技体育运动生物力学研究现状与趋势.医用生物力学 36:491-501. (Liu H., B. Yu, L. W. Zhang, H. J. Wu 2021b. Research Status and Trends in Competitive Sports Biomechanics,Journal of Medical Biomechanics 36:491-501.)
[18] 刘延柱.2005.腾空运动:从猫空中转体谈起——物理与体育系列专题之八.物理通报 5:48-49. (Liu Y. Z. 2005. Flying Sports: talking about the cat's turning in the air -- the eighth special topic of physics and sports series,Physics Bulletin 5:48-49.)
[19] 吕钢, 孙凯扬, 买毅强, 等.2021.空气动力学距离对标枪运动员吕会会投掷技术的个案研究.中国体育科技 57:52-57. (Lv G., K. Y. Sun, Y. Q. Mai, et al. 2021. The Effect ofAerodynamic Distance on the Performance of Javelin Throwers:A Case Study on the Throwing Technique of an Elite Chinese Women Javelin Thrower LYU Huihui,China Sport Science and Technology 57:52-57.)
[20] 吕稼冰, 许建中, 田科, 李宇.2017.重度膝关节骨性关节炎与胫骨内翻、外翻畸形的关系.河南医学研究 27:6. (Lv J. B., J. Z. Xu, K. Tian, Y. Li 2017. Relationship between severe knee osteoarthritis and tibial varus and valgus deformity,Henan Medical Research 27:6.)
[21] 蒲放, 樊瑜波.2012.康复辅具设计中的生物力学研究.医用生物力学 28:363-365. (Pu F. and Y. B. Fan 2012. Biomechanical research for design of rehabilitation technical aids,Journal of Medical Biomechanics 28:363-365.)
[22] 孙志成, 王彤.2018.三维运动分析系统在康复医学评估检测中的应用进展.中国康复医学杂志 33:234-238. (Sun Z. C. and T. Wang 2018. Application of three-dimensional motion analysis system in rehabilitation medicine evaluation,Chinese Journal ofRehabilitation Medicine 33:234-238.)
[23] 王国杰, 苏炳添, 章碧玉, 彭秋艳, 邹吉玲.2019.优秀短跑运动员苏炳添的技术优化训练研究.成都体育学院学报 45:82-87. (Wang G. J., B. T. Su, B. Y. Zhang, Q. Y Peng, J. L. Zou 2019. Researchon the Technical Optimization Training of the Elite Sprinter Su Bingtian,Journal of Chengdu Sport University 45:82-87.)
[24] 王丽珍, 樊瑜波.2020. 过载性损伤与防护生物力学. 力学进展 50(1): 202004. (Wang L Z, Fan Y B. 2020. The biomechanics of injury and prevention.Advances in Mechanics 50(1): 202004.)
[25] 王清, 郝卫亚, 刘卉, 王向东, 刘颖.2016.运动生物力学学科发展现状及前景.体育科研 37:91-95. (Wang Q., W. Y. Hao, H. Liu, X. D. Wang, Y. Liu 2016. Development status and Prospect of Sports Biomechanics,Sport Science Research 37:91-95.)
[26] 王晓辉, 王坤, 胡志勇, 田红亮.2020.假肢接受腔设计及界面应力的有限元分析.中国组织工程研究 24:862-868. (Wang X. H., K. Wang, Z. Y. Hu, H. L. Tian 2020. Design of prosthetic socket and finite element analysis of interface stress,Tissue Engineering Research in China 24:862-868.)
[27] 吴成亮, 郝卫亚, 庞乐.2009.踺子转体180°前手翻接直体前空翻转体类跳马动作的运动学分析.中国体育科技 45:42-45+74. (Wu C. L., W. Y. Hao, L. Pang 2009. Kinematical Analysis on Category of Movement-round-off with1/2 Twist and Forward Handspring and Salto Stretched with a Twist,China Sport Science and Technology 45:42-45+74.)
[28] 吴成亮, 郝卫亚.2021.体操后空翻类落地动作的下肢关节负荷及其控制特征.中国运动医学杂志 40:438-449. (Wu C. L. and W. Y. Hao 2021. Research on Lower-Limb Joint Loading and Motor Control Strategies on Backward Somersault Landings in Gymnastics,Chinese Journal of Sports Medicine 40:438-449.)
[29] 肖晓飞, 郝卫亚.2019.自由体操落地致膝损伤的生物力学因素分析.中国运动医学杂志 38:169-175. (Xiao Y. F. and W. Y. Hao 2019. A Biomechanical Factor Analysis of Knee Injury of Gymnasts during Landing in Floor Exercise,Chinese Journal of Sports Medicine 38:169-175.)
[30] 杨金娟, 陈俊飞, 支子, 严翊.2019.肌腱力学生物学与运动性肌腱损伤病理机制研究进展.中国运动医学杂志 38:901-906. (Yang J. J., J. F. Chen, Z. Zhi, Y. Yan 2019. Research progress in tendon mechanical biology and pathological mechanism of exercise-induced tendon injury,Chinese Journal of Sports Medicine 38:901-906.)
[31] 张力文.2018.两种踢球方式对踢球腿胭绳肌生物力学特征的影响. (Zhang L. W. 2018. Effects of two kicking methods on biomechanical characteristics of cochineal muscle of kicking leg,Beijing Sport University.)
[32] 张明, 樊瑜波, 王喜太.2011.康复工程中的生物力学问题.医用生物力学 26:291-293. (Zhang M., Y. B. Fan, X. T. Wang 2011. Biomechanical problems in rehabilitation engineering,Journal of Medical Biomechanics 26:291-293.)
[33] 张腾宇, 姚杰, 莫中军, 等.2020.假肢对线对大腿截肢者健侧膝关节内部接触力学特性的影响.医用生物力学 35:428-435. (Zhang T. Y., J. Yao, Z. J. Mo, et al. 2020. Effects of Prosthetic Alignment on Internal Contact Mechanical Characteristics of Intact Knee Joints for Transfemoral Amputees,Journal of Medical Biomechanics 35:428-435.)
[34] 赵博伦, 周兰姝.2021.基于表面肌电技术的脑卒中吞咽障碍评估研究进展.中华物理医学与康复杂志 43:655-659. (Zhao B. L. and L. S. Zhou 2021. Research Progress on Evaluation of dysphagia in stroke patients based on surface electromyography,Chinese Journal of Physical Medicine and Rehabilitation 43:655-659.)
[35] 赵彦军, 李剑, 苏鹏, 马俪芳.2020.我国康复辅具创新设计与展望.包装工程 41:14-22. (Zhao Y. J., J. Li, P. Su, L. F. Ma 2020. Innovative design and Prospect of rehabilitation aids in China,Packaging Engineering 41:14-22.)
[36] 甄洁, 肖涛, 李振, 时静宇, 王晨曦.2021.运动生物力学的国内外研究热点对比分析.第二十一届全国运动生物力学学术交流大会. (Zhen J. T. Xiao, Z. Li, J. Y. Shi, C. X. Wang 2021. Comparative analysis of research hotspots of sports biomechanics at home and abroad,The 21st National Sports Biomechanics Conference.)
[37] 庄维友.2018.原地掷实心球最后用力阶段的表面肌电研究. (Zhuang W. Y. 2018. Surface Electromyography Study on the Final Force Stage of Solid Throwing in situ,Guangzhou University.)
[38] Abidin, D. 2021. A case study on player selection and team formation in football with machine learning.Turkish Journal of Electrical Engineering & Computer Sciences 29: 1672 – 1691.
[39] Ackermann, M. and A. J. v. d. Bogert 2010. Optimality principles for model-based prediction of human gait.Journal of Biomechanics 43: 1055–1060.
[40] Adrian, M. J. and J. M. Cooper (1989). Biomechanics of Human Movement. Vancouver, Washington, Benchmark Press.
[41] Alexander, R. M. 1976. Mechanics of bipedal locomotion.Perspectives in experimental biology 1: 493–504.
[42] Alexander, R. M. 1995. Leg design and jumping technique for humans, other vertebrates and insects.Philos Trans R Soc Lond B Biol Sci 347(1321): 235-248.
[43] Alexander, R. M. 2003. Modelling approaches in biomechanics.Philos Trans R Soc Lond B Biol Sci 358(1437): 1429-1435.
[44] Alt, T., J. Severin, I. Komnik, et al. 2021. Nordic Hamstring Exercise training induces improved lower-limb swing phase mechanics and sustained strength preservation in sprinters.Scand J Med Sci Sports 31(4): 826-838.
[45] An, K. N., B. M. Kwak, E. Y. Chao and B. F. Morrey 1984. Determination of muscle and joint forces: a new technique to solve the indeterminate problem. J.Journal of Biomechanical Engineering 106(4): 364-367.
[46] Andersson, E. P., A. Govus, O. M. Shannon and K. McGawley 2019. Sex Differences in Performance and Pacing Strategies During Sprint Skiing.Front in Physiology 10: 295.
[47] Ao, D., M. S. Shourijeh, C. Patten and B. J. Fregly 2020. Evaluation of Synergy Extrapolation for Predicting Unmeasured Muscle Excitations from Measured Muscle Synergies.Front Comput Neurosci 14: 588943.
[48] Apte S, Prigent G, Stoggl T, et al. 2021. Biomechanical Response of the Lower Extremity to Running-Induced Acute Fatigue: A Systematic Review.Frontiers in Physiology 12:646042.
[49] Arnold, E. M., S. R. Ward, R. L. Lieber and S. L. Delp 2010. A model of the lower limb for analysis of human movement.Ann Biomed Eng 38(2): 269-279.
[50] Audu, M.L., Kirsch, R.F. and Triolo, R.J. 2003. A computational technique for determining the ground reaction forces in human bipedal stance.J. Appl. Biomech 19: 361–371.
[51] Bailey, C. A., T. K. Uchida, J. Nantel and R. B. Graham 2021. Validity and Sensitivity of an Inertial Measurement Unit-Driven Biomechanical Model of Motor Variability for Gait.Sensors (Basel) 21(22): 7690.
[52] Balbinot, G., M. J. Wiest, G. Li, et al. 2022. The use of surface EMG in neurorehabilitation following traumatic spinal cord injury: A scoping review.Clin Neurophysiol 138: 61-73.
[53] Barbosa, T. M., T. Li, W. Cai and J. Zhan 2017. Numerical Investigation of Swimmer’s Gliding Stage with 6-DOF Movement.Plos One 12(1).
[54] Bartlett, R. (1997). Introduction of Sports Biomechanics. London, E & FN Spon.
[55] Bartlett, R. M. (2009). The Aerodynamics of Javelin Flight-A Re-Evaluation. 5 International Symposium on Biomechanics in Sports.
[56] Bartee, H. and Dowell, L. 1982. A cinematographical analysis of twisting about the longitudinal axis when performers are free of support.Journal of Human Movement Studies 8: 41-54.
[57] Bassani, T., E. Stucovitz, Z. Qian, M. Briguglio and F. Galbusera 2017. Validation of the AnyBody full body musculoskeletal model in computing lumbar spine.Journal of Biomechanics 58: 89-96.
[58] Bates, N. A., N. D. Schilaty, C. V. Nagelli, A. J. Krych and T. E. Hewett 2019. Multiplanar Loading of the Knee and Its Influence on Anterior Cruciate Ligament and Medial Collateral Ligament Strain During Simulated Landings and Noncontact Tears.Am J Sports Med 47(8): 1844-1853.
[59] Bezodis, N. E., A. I. Salo and G. Trewartha 2015. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters.Eur J Sport Sci 15(2): 118-124.
[60] Bezodis, N. E., S. P. Walton and R. Nagahara 2019a. Understanding the track and field sprint start through a functional analysis of the external force features which contribute to higher levels of block phase performance.J Sports Sci 37(5): 560-567.
[61] Bezodis, N. E., S. Willwacher and A. I. T. Salo 2019b. The Biomechanics of the Track and Field Sprint Start: A Narrative Review.Sports Med 49(9): 1345-1364.
[62] Bhatia S., LaPrade C. M., Ellman M. B. et al. 2014. Meniscal root tears: significance, diagnosis, and treatment.Am J Sports Med 42(12):3016–3030.
[63] Bianco N. A., Patten C., Fregly B. J. 2017. Can measured synergy excitations accurately construct unmeasured muscle excitations.Journal of Biomechanical Engineering 140(1): 011011.
[64] Blankevoort, L., J. H. Kuiper, R. Huiskes and H. J. Grootenboer 1991. Articular contact in a three-dimensional model of the knee.Journal of Biomechanics 24(11): 1019-1031.
[65] Brown S. H. M, Potvin J. R. 2005. constraining spine stability levels in an optimization model leads to the prediction of trunk muscle cocontraction and improved spine compression force estimates.Journal of biomechanics (38): 745–754.
[66] Boden, B. P. and D. C. Osbahr 2000. High-risk stress fractures evaluation and treatment.Journal of the American Academy of Orthopaedic Surgeons 8(6): 344-353.
[67] Boden, B. P. and F. T. Sheehan 2021. Mechanism of non-contact ACL injury: OREF Clinical Research Award 2021.Journal of Orthopaedic Research 40(3): 531-540.
[68] Bojanić, I., H. I. Pećina and M. Pećina 2001. Stress fractures.Arh Hig Rada Toksikol 52(4): 471-482.
[69] Bourque, M. O., K. L. Schneider, J. E. Calamari, et al. 2019. Combining physical therapy and cognitive behavioral therapy techniques to improve balance confidence and community participation in people with unilateral transtibial amputation who use lower limb prostheses: a study protocol for a randomized sham-control clinical trial.Trials 20(1): 812.
[70] Bouvier, B., S. Duprey, L. Claudon, R. Dumas and A. Savescu 2015. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations.Sensors (Basel) 15(8): 18813-18833.
[71] Buchanan T. S., Lloyd D. G., Manal K., et al. 2005. Estimation of Muscle Forces and Joint Moments Using a Forward-Inverse Dynamics Model.Medicine & Science in Sports & Exercise 37(11): 1911-1916.
[72] Butler, R. J., H. P. Crowell and I. M. Davis 2003. Lower extremity stiffness: implications for performance and injury.Clinical Biomechanics 18: 511-517.
[73] Cao, Z., G. Hidalgo, T. Simon, S.-E. Wei and Y. Sheikh 2021. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields.IEEE Trans Pattern Anal Mach Intell 43(1): 172-186.
[74] Chen, S. C., H. J. Hsieh, T. W. Lu, et al 2011. A method for estimating subject-specific body segment inertial parameters in human movement analysis.Gait Posture 33(4): 695-700.
[75] Chen, Z., X. Zhang, M. M. Ardestani, et al. 2014. Prediction of in vivo joint mechanics of an artificial knee implant using rigid multi-body dynamics with elastic contacts.Proc Inst Mech Eng H 228(6): 564-575.
[76] Cheng, K. B. and M. Hubbard 2008. Role of arms in somersaulting from compliant surfaces: a simulation study of springboard standing dives.Hum Mov Sci 27(1): 80-95.
[77] Choi, A., Lee, J.M. and Mun, J.H. 2013. Ground reaction forces predicted by using artifificial neural network during asymmetric movements.Int. J. Precis. Eng. Manuf. 14: 475–483.
[78] Chu, S. K. and M. E. Rho 2016. Hamstring Injuries in the Athlete: Diagnosis, Treatment, and Return to Play.Curr Sports Med Rep 15(3): 184-190.
[79] Collins, S.H., Adamczyk, P.G., Ferris, D.P., et al. 2009. A simple method for calibrating force plates and force treadmills using an instrumented pole.Gait Posture 29: 59–64.
[80] Cossor, J. and B. Mason (2001). Swim Start Performances at The Sydney 2000 Olympic Games. ISBS - Conference Proceedings Archive.
[81] Danielsson, A., A. Horvath, C. Senorski, et al. 2020. The mechanism of hamstring injuries - a systematic review.BMC Musculoskelet Disord 21(1): 641.
[82] De Smet A A, Mukherjee R. 2008. Clinical, MRI, and arthroscopic fifi ndings associated with failure to diagnose a lateral meniscal tear on knee MRI.AJR Am J Roentgenol 190 (1): 22-6.
[83] Delp, S. L., F. C. Anderson, A. S. Arnold, et al. 2007. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement.IEEE Transactions on Biomedical Engineering 54(11): 1940-1950.
[84] Delp, S. L., J. P. Loan, M. G. Hoy, et al. 1990a. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures.IEEE Transactions on Biomedical Engineering 37: 757-767.
[85] Delp, S. L., J. P. Loan, M. G. Hoy, et al. 1990b. An interactive graphics-based model of the lower extremity to study orthopedic surgical procedures.IEEE Trans Biomed Eng 37(8): 757-767.
[86] Deymier-Black, A. C., F. Yuan, A. Singhal, et al. 2012. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone.Acta Biomater 8(1): 253-261.
[87] Diraneyya, M. M., J. Ryu, E. Abdel-Rahman et al. 2021. Inertial Motion Capture-Based Whole-Body Inverse Dynamics.Sensors (Basel) 21(21): 7353.
[88] Drillis, R., R. Contini and M. Bluestein 1964. Body Segment Parameters: A Survey of Measurement Techniques.Artificial Limbs 25: 44-66.
[89] Fang, H.-S., S. Xie, Y.-W. Tai and C. Lu (2017). RMPE: Regional Multi-person Pose Estimation. 2017 IEEE International Conference on Computer Vision (ICCV), IEEE.
[90] Farley, C. T., Blickhan, R., Saito, J., et al. 1991. Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. Journal of Applied Physiology 71(6), 2127–2132.
[91] Fasel, B., J. Favre, J. Chardonnens, G. Gremion and K. Aminian 2015. An inertial sensor-based system for spatio-temporal analysis in classic cross-country skiing diagonal technique.Journal of Biomechanics 48(12): 3199-3205.
[92] Ferri-Caruana, A., S. Mollà-Casanova, M. Baquedano-Moreno and P. Serra-Añó 2022. Electromyographic activity of posterior kinetic chain muscles during hamstring strengthening exercises.Physical Therapy in Sport 55: 205-210.
[93] Fiacchi, F., F. Zambianchi, V. Digennaro, et al. 2014. In vivo kinematics of medial unicompartmental osteoarthritic knees during activities of daily living.The Knee 21: S10-S14.
[94] Figgen, M., 1989. Computer simulation of the two-dimensional flight phase of an athlete. In Proceedings of the XII International Congress of Biomechanics, Abstract 274. University of California, Los Angeles.
[95] Fiorentino, N. M., M. R. Rehorn, E. S. Chumanov, D. G. Thelen and S. S. Blemker 2014. Computational Models Predict Larger Muscle Tissue Strains at Faster Sprinting Speeds.Medicine & Science in Sports & Exercise 46(4): 776-786.
[96] Fluit, R., Andersen, M.S., Kolk, S., et al. 2014. Prediction of ground reaction forces and moments during various activities of daily living.J. Biomech. 47(10): 2321–2329.
[97] Ganley, K. J. and C. M. Powers 2004. Anthropometric parameters in children: a comparison of values obtained from dual energy x-ray absorptiometry and cadaver-based estimates.Gait & Posture 19(2): 133-140.
[98] Garner, B. A. and M. G. Pandy 2003. Estimation of musculotendon properties in the human upper limb.Ann Biomed Eng 31(2): 207-220.
[99] Gellaerts, J., E. Bogdanov, F. Dadashi and B. Mariani 2018. In-field validation of an inertial sensor-based system for movement analysis and classification in ski mountaineering.Sensors 18(3): 885.
[100] Geng, T., X. Jia and Y. Guo 2021. Lower Limb Joint Nursing and Rehabilitation System Based on Intelligent Medical Treatment.J Healthc Eng 2021: 6646977.
[101] Gheluwe, B. v. 1981. a biomechanical simulation model for airborne twist in backward somersaults.Journal of Human Moment Studies 7: 1-22.
[102] Gollapud, S. K. and D. C. Lin 2009. Experimental determination of sarcomere force-length relationship in type-I human skeletal muscle fibers.Journal of biomechanics 42(13): 2011-2016.
[103] Gordon, D. F. N., G. Henderson and S. Vijayakumar 2018. Effectively Quantifying the Performance of Lower-Limb Exoskeletons Over a Range of Walking Conditions.Front Robot AI 5: 61.
[104] Gorkovenko, A. V., O. V. Lehedza, W. Pilewska, et al. 2019. Evaluation of the Complexity of Control of Simple Linear Hand Movements Using Principal Component Analysis.Neurophysiology 51(2): 132-140.
[105] Guimaraes, J. B., R. N. Chemin, F. F. Araujo, et al. 2022. Meniscal Root Tears: An Update Focused on Preoperative and Postoperative MRI Findings.AJR Am J Roentgenol 219(2): 269-278.
[106] Guissard, N., J. Duchateau and K. Hainaut 1992. EMG and mechanical changes during sprint starts at different front block obliquities.Med Sci Sports Exerc 24(11): 1257-1263.
[107] Gunther, M., S. Schmitt and V. Wank 2007. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models.Biol Cybern 97(1): 63-79.
[108] Guo, J., Y. Sun, Y. Hao, L. Cui and G. Ren 2020. A mass-flowing muscle model with shape restrictive soft tissues: correlation with sonoelastography.Biomechanics and Modeling in Mechanobiology 19: 911-926.
[109] Hanavan, E. P. 1964. A mathematical model of the human body. Technical Report AMRL-TR-64-102, AD-608-463, Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio.
[110] Harland, M. J. and J. R. Steele 1997. Biomechanics of the sprint start.Sports Med 23(1): 11-20.
[111] Harrison, A. and D. Graham (2006). An investigation of Schema theory applied to the biomechanics of the sprint start in athletics. 26th International symposium on biomechanics in sports. Salzburg Austria. 1.
[112] Hart, N. H., S. Nimphius, T. Rantalainen, et al. 2017. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action.J Musculoskelet Neuronal Interact 17(3): 114–139.
[113] Hatze, H. 1975. A new method for the simultaneous measurement of the movement of inertia, the damping coefficient and the location of the centre of mass of a body segment in situ.Eur J Appl Physiol Occup Physiol 34(4): 217-226.
[114] Hay, J. G. and J. G. Reid (1988). Anatomy,mechanics,and human motion. USA, Prentice Hall.
[115] Herrel, A., M. Vasilopoulou-Kampitsi and C. Bonneaud 2014. Jumping performance in the highly aquatic frog, Xenopus tropicalis: sex-specific relationships between morphology and performance.PeerJ 2: e661.
[116] Hettinga, F. J., M. J. Konings and C. E. Cooper 2016. Differences in Muscle Oxygenation, Perceived Fatigue and Recovery between Long-Track and Short-Track Speed Skating.Front Physiol 7: 619.
[117] Hicks J. L., Uchida T. K., Seth A., et al. 2015. Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement.Journal of Biomechanical Engineering 137(2): 020905 (020924 pages).
[118] Higashihara, A., Y. Nagano, T. Ono and T. Fukubayashi 2016. Relationship between the peak time of hamstring stretch and activation during sprinting.Eur J Sport Sci 16(1): 36-41.
[119] Hill, A. V. 1938. The heat of shortening and the dynamic constants of muscle.Proc R Soc London Ser B - Biol Sci 126: 136-195.
[120] Hopper, B. J. (1973). The Mechanics of Human Movement. New York, American Elsevier Pub. Co.
[121] Huang, Y., W. P. Lai, Q. Qian, et al. 2018. Translation of robot-assisted rehabilitation to clinical service: a comparison of the rehabilitation effectiveness of EMG-driven robot hand assisted upper limb training in practical clinical service and in clinical trial with laboratory configuration for chronic stroke.Biomed Eng Online 17(1): 91.
[122] Hyvarinen, A. and E. Oja 2000. Independent component analysis: algorithms and applications.Neural Networks 13: 411–430.
[123] Ionescu, C., D. Papava, V. Olaru and C. Sminchisescu 2014. Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 36(7).
[124] Jackson, J.N., Hass, C.J. and Fregly, B.J. 2016. Development of a subject-specifific foot-ground contact model for walking.J. Biomech. Eng. 138(9): 091002.
[125] Jogi, S. P., R. Thaha, S. Rajan, et al. 2021. Model for in-vivo estimation of stiffness of tibiofemoral joint using MR imaging and FEM analysis.J Transl Med 19(1): 310.
[126] John, C.T., Anderson, F.C., Guendelman, E. et al. (2007). LongDuration Muscle-Actuated Simulations of Walking at Multiple Speeds. American Society of Biomechanics. Stanford, California, USA.
[127] Johnson, J. E., P. Lee, T. E. McIff, E. B. Toby and K. J. Fischer 2014. Computationally efficient magnetic resonance imaging based surface contact modeling as a tool to evaluate joint injuries and outcomes of surgical interventions compared to finite element modeling.J Biomech Eng 136(4): 0410021-0410029.
[128] Joyce, G. C., P. M. H. Rack and D. R. Westbury 1969. The Mechanical Prop erties of Cat Soleus Muscle During Controlled Lengthening and Shortening Movemen.Journal of Physiology 204: 461-474.
[129] Kane, T. R. and M. P. Scher 1969. A dynamical explanation of the falling cat phenomenon.International Journal of Solids and Structures 5(7): 667-670.
[130] Karatisidis A., Bellusci G., Schepers H. M. et al. 2016. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture.Sensors(Basel) 17(1): 75.
[131] Kasmi, S., H. Zouhal, R. Hammami, et al. 2021. The Effects of Eccentric and Plyometric Training Programs and Their Combination on Stability and the Functional Performance in the Post-ACL-Surgical Rehabilitation Period of Elite Female Athletes.Front Physiol 12: 688385.
[132] Kiel, J. and K. Kaiser (2022). Stress Reaction and Fractures. Treasure Island, StatPearls.
[133] Kiapour, A. M. and M. M. Murray 2014. Basic science of anterior cruciate ligament injury and repair.Bone Joint Res 3(2): 20-31.
[134] King, M. A., P. W. Kong and M. R. Yeadon 2019. Maximising forward somersault rotation in springboard diving.J Biomech 85: 157-163.
[135] King, M. A., P. W. Kong and M. R. Yeadon 2022. Differences in the mechanics of takeoff in reverse and forward springboard somersaulting dives.Sports Biomech: 1-13.
[136] Kleshnev, V. (2016). The Biomechanics of Rowing. UK, Crowood Press.
[137] Knippenberg, E., J. Verbrugghe, I. Lamers, et al. 2017. Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application, target population and efficacy.J Neuroeng Rehabil 14(1): 61.
[138] Knoll, K. and I. Seidel (2016). Effective Execution of the Flight in Quadruple Jumps in Figure Skating.<u>Sports Biomechanics</u>.
[139] Kobayashi, H., T. Kanamura, S. Koshida, et al. 2010. Mechanisms of the anterior cruciate ligament injury in sports activities: A twenty-year clinical research of 1,700 athletes.J Sports Sci Med 9(1): 669-675.
[140] Koga, H., A. Nakamae, Y. Shima, et al. 2010. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball.Am J Sports Med 38(11): 2218-2225.
[141] Krych, A. J., M. D. LaPrade, M. Hevesi, et al. 2020. Investigating the Chronology of Meniscus Root Tears: Do Medial Meniscus Posterior Root Tears Cause Extrusion or the Other Way Around?Orthop J Sports Med 8(11): 2325967120961368.
[142] Landis, S. E., R. T. Baker and J. G. Seegmiller 2018. Non-Contact Anterior Cruciate Ligament and Lower Extremity Injury Risk Prediction Using Functional Movement Screen and Knee Abduction Moment: An Epidemiological Observation of Female Intercollegiate Athletes. International Journal of Sports Physical Therapy 13(6): 973-984.
[143] Lapham, A. C. and R. M. Bartlett 1995. The use of artificial intelligence in the analysis of sports performance: a review of applications in human gait analysis and future directions for sports biomechanics.Journal of Sports Science 13(3): 229-237.
[144] Lee, S. J., Y. Ren, A. H. Chang, et al. 2020. Plane Dependent Subject-Specific Neuromuscular Training for Knee Rehabilitation.IEEE Trans Neural Syst Rehabil Eng 28(8): 1876-1883.
[145] Lerner, Z. F., M. S. DeMers, S. L. Delp and R. C. Browning 2015. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.J Biomech 48(4): 644-650.
[146] Leng, H., M. J. Reyes, X. N. Dong and X. Wang 2013. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone.Bone 55(2): 288-291.
[147] Lloyd D. G. and Besier T. 2003. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.Journal of biomechanics 36(6): 765-76.
[148] Lieber, R. L. and J. Fridén 2002. Mechanisms of muscle injury gleaned from animal models.American Journal of Physical Medicine and Rehabilitation 81(11 SUPPL.): S70-S79.
[149] Lieber, R. L. and J. Fridén 1993. Muscle damage is not a function of muscle force but active muscle strainJournal of applied physiology 74(2): 520-526.
[150] Liu, H. and B. Yu 2012. Effects of phase ratio and velocity conversion coefficient on the performance of the triple jump.J Sports Sci 30(14): 1529-1536.
[151] Liu, H., D. Mao and B. Yu 2015. Effect of approach run velocity on the optimal performance of the triple jump.Journal of Sport and Health Science 4(4): 347-352.
[152] Liu, X., H. Huang, S. Ren, Q. Rong and Y. Ao 2020. Use of the normalcy index for the assessment of abnormal gait in the anterior cruciate ligament deficiency combined with meniscus injury.Comput Methods Biomech Biomed Engin 23(14): 1102-1108.
[153] Liu, X., Y. Zhu, H. Huo, et al. (2019). Design of Virtual Guiding Tasks With Haptic Feedback for Assessing the Wrist Motor Function of Patients With Upper Motor Neuron Lesions. IEEE Transactions on Neural Systems and Rehabilitation Engineering.
[154] Liu, Y., G. B. Joseph, S. C. Foreman, et al. 2021. Determining a Threshold of Medial Meniscal Extrusion for Prediction of Knee Pain and Cartilage Damage Progression Over 4 Years: Data From the Osteoarthritis Initiative.American Journal of Roentgenology 216(5): 1318-1328.
[155] Maganaris, C. N. and J. P. Paul 2002. Tensile properties of the in vivo human gastrocnemius tendon.Journal of Biomechanics 35: 1639–1646.
[156] Magnusson, S. P., P. Aagaard, S. Rosager, P. Dyhre-Poulsen and M. Kjaer 2001. Load–displacement properties of the human triceps surae aponeurosis in vivo.Journal of Physiology 531(1): 277-288.
[157] Magnusson, S. P., H. Langberg and M. Kjaer 2010. The pathogenesis of tendinopathy: balancing the response to loading.Nat Rev Rheumatol 6(5): 262-268.
[158] Manal, K. and T. S. Buchanan 2003. A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms.Journal of Biomechanics 36: 1197–1202.
[159] Maniar, N., M. H. Cole, A. L. Bryant and D. A. Opar 2022. Muscle Force Contributions to Anterior Cruciate Ligament Loading.Sports Med 52(8): 1737-1750.
[160] Mann, R. V. and A. Murphy (2018). The mechanics of sprinting and hurdling, CreateSpace Independent Publishing Platform.
[161] Markolf, K. L., D. M. Burchfield, M. M. Shapiro, et al. 1995. Combined Knee Loading States that Generate High Anterior Cruciate Ligament Forces.Journal of Orthopaedic Research 13(6): 930-935.
[162] Martikkala, V., Oksa, J., Viitasalo, J. T., & Luhtanen, P. (1995). Evaluated muscular work in diving springboard takeoff. Proceedings of the XV congress of the international society of biomechanics.
[163] Martin, R. B., D. B. Burr, N. A. Sharkey and D. P. Fyhrie (2015). Mechanical Properties of Ligament and Tendon.<u>Skeletal Tissue Mechanics</u>: 175-225.
[164] Mashima, H. 1984. Force-velocity Relation and Contractility in Striated Muscles.Japanese Journal of Physiology 34: 1-17.
[165] Matheny, L. M., A. C. Ockuly, J. R. Steadman and R. F. LaPrade 2015. Posterior meniscus root tears: associated pathologies to assist as diagnostic tools.Knee Surg Sports Traumatol Arthrosc 23(10): 3127-3131.
[166] Matsushima, A., K. Yoshida, H. Genno, et al. 2015. Clinical assessment of standing and gait in ataxic patients using a triaxial accelerometer.Cerebellum Ataxias 2: 9.
[167] McMahon, T. A. and G. C. Cheng 1990. The mechanics of running: How does stiffness couple with speed.Journal of Biomechanics 23(Suppl 1): 65-78.
[168] Merel J., Botvinick M. and Wayne G. 2019. Hierarchical motor control in mammals and machines.Nat Commun, 10(1): 5489.
[169] Mehta, D., H. Rhodin, D. Casas, et al. (2017). Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision. 2017 International Conference on 3D Vision (3DV).
[170] Meyer, E. G. and R. C. Haut 2008. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression.J Biomech 41(16): 3377-3383.
[171] Milanese, C., M. Bertucco and C. Zancanaro 2014. The effects of three different rear knee angles on kinematics in the sprint start.Biol Sport 31(3): 209-215.
[172] Mills, K., M. A. Hunt, R. Leigh and R. Ferber 2013. A systematic review and meta-analysis of lower limb neuromuscular alterations associated with knee osteoarthritis during level walking.Clin Biomech (Bristol, Avon) 28(7): 713-724.
[173] Mizutori, H., Y. Kashiwagi, N. Hakamada, Y. Tachibana and K. Funato 2021. Kinematics and joints moments profile during straight arm press to handstand in male gymnasts.PLoS One 16(7): e0253951.
[174] Nakamura, Y. (1990). Advanced robotics: Redundancy and optimization. Boston, MA, US, Addison-Wesley Longman Publishing Co., Inc.
[175] Nazari, G., P. Bobos, J. C. MacDermid, et al. 2018. Psychometric properties of the zephyr bioharness device: a systematic review.BMC Sports Sci. Med. Rehabil. 10(6): 10.1186/s13102-13018-10094-13104.
[176] Nilsson J., Thorstensson, A. and Halbertsma, J. 1985. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans.Acta Physiologica Scandinavica 123(4): 457–475.
[177] Niu, H., C. Liu, A. Li, et al. 2012. Relationship between triphasic mechanical properties of articular cartilage and osteoarthritic grade.Science China Life Science 55: 444-451.
[178] Nouredanesh, M., A. Godfrey, D. Powell and J. Tung 2022. Egocentric vision-based detection of surfaces: towards context-aware free-living digital biomarkers for gait and fall risk assessment.J Neuroeng Rehabil 19(1): 79.
[179] Noyes, F. R., D. L. Butler, E. S. Grood, R. F. Zernicke and M. S. Hefzy 1984. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions.J Bone Joint Surg Arm 66(3): 344-352.
[180] Nyman, J. S., A. Roy, M. J. Reyes and X. Wang 2009. Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups.J Biomed Mater Res A 89(2): 521-529.
[181] Oh, S.E., Choi, A. and Mun, J.H. 2013. Prediction of ground reaction forces during gait based on kinematics and a neural network model.J. Biomech. 46: 2372–2380.
[182] Oh, Y. K., D. B. Lipps, J. A. Ashton-Miller, et al. 2012. What strains the anterior cruciate ligament during a pivot landing?Am J Sports Med 40(3): 574-583.
[183] Palisch, A. R., R. R. Winters, M. H. Willis et al. 2016. Posterior Root Meniscal Tears: Preoperative, Intraoperative, and Postoperative Imaging for Transtibial Pullout Repair.RadioGraphics 36: 1792–1806.
[184] Pamies-Vila, R., Font-Llagunes, J.M., Cuadrado, J., Alonso, F.J. 2012. Analysis of different uncertainties in the inverse dynamic analysis of human gait.Mech. Mach. Theory 58: 153–164.
[185] Paul, G., C. Bishop, M. Arakilo and D. Thewlis (2010). A simulation to describe the effects of in- shoe orthoses. 3-D Analysis of Human Movement (3DMA 2010).
[186] Pauli, C. A., M. Keller, W. R. Taylor and S. Lorenzetti 2016. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.Journal of Strength and Conditioning Research 30(3): 643-652.
[187] Pollock, A., G. Baer, P. Campbell, et al. 2014. Physical rehabilitation approaches for the recovery of function and mobility following stroke.Cochrane Database Syst Rev (4): CD001920.
[188] Prilutsky, B. I., Petrova, L. N., and Raitsin, L. M. 1996. Comparison of mechanical energy expenditure of joint moments and muscle forces during human locomotion.Journal of Biomechanics 29(4), 405–415.
[189] Raabe, M. E. and A. M. W. Chaudhari 2016. An investigation of jogging biomechanics using the full-body lumbar spine model: Model development and validation.J Biomech 49(7): 1238-1243.
[190] Randhawa, A. and J. M. Wakeling 2015. Multidimensional models for predicting muscle structure and fascicle pennation.J Theor Biol 382: 57-63.
[191] Rao, G., Amarantini, D., Berton, E., et al. 2006. Inflfluence of body segments' parameters estimation models on inverse dynamics solutions during gait.J. Biomech 39: 1531–1536.
[192] Ren, L., Jones, R.K. and Howard, D. 2008. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics.J. Biomech. 41: 2750–2759.
[193] Richards, J.G. 1999. The measurement of human motion: a comparison of commercially available systems.Hum. Mov. Sci. 18: 589–602.
[194] Rho J-Y, Kuhn-Spearing L, Zioupos P. 1998. Mechanical properties and the hierarchical structure of bone.Medical engineering & physics. 20:92–102.
[195] Richard, V., G. Lamberto, T. W. Lu, A. Cappozzo and R. Dumas 2016. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study.PLoS One 11(6): e0157010.
[196] Riemer, R., Hsiao-Wecksler, E.T. and Zhang, X.D. 2008. Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait.Gait Posture 27: 578–588.
[197] Robert, T., Causse, J. and Monnier, G. 2013. Estimation of external contact loads using an inverse dynamics and optimization approach: general method and application to sit-to-stand maneuvers.J. Biomech. 46: 2220–2227.
[198] Rossi, A., L. Pappalardo, P. Cintia, et al. 2018. Effective injury forecasting in soccer with gps training data and machine learning.PLoS One 13(7): e0201264.
[199] Rubio-Peiroten, A., F. Garcia-Pinillos, and D. Jaen-Carrillo, et al. 2021. Relationship between Connective Tissue Morphology and Lower-Limb Stiffness in Endurance Runners. A Prospective Study.Int J Environ Res Public Health 18(16).
[200] Sandbakk, Ø., A. M. Hegge, T. Losnegard, et al. 2016. The Physiological Capacity of the World's Highest Ranked Female Cross-country Skiers.Med Sci Sports Exerc 48(6): 1091-1100.
[201] Sanders, R. H. and B. J. Gibson 2000. Technique and timing in the womens forward two and one half somersault pike and mens three and one half somersault pike 3m springboard dives.Journal of Science and Medicine in Sport 3(4): 434-448.
[202] Sant, G. L., F. Ates, J. L. Brasseur and A. Nordez 2015. Elastogra- phy study of hamstring behaviors during passive stretching.PLoS One 10(9): e0139272.
[203] Sartori, M., M. Reggiani, D. Farina and D. G. Lloyd 2012. EMG-Driven Forward-Dynamic Estimation of Muscle Force and Joint Moment about Multiple Degrees of Freedom in the Human Lower Extremity.PLoS One 7(12): e52618.
[204] Sartori M., Farina D. and Lloyd D. G. 2014. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.Journal of biomechanics 47(15): 3613-21.
[205] Sasaki, S., H. Koga, T. Krosshaug, S. Kaneko and T. Fukubayashi 2018. Kinematic analysis of pressing situations in female collegiate football games: New insight into anterior cruciate ligament injury causation.Scand J Med Sci Sports 28(3): 1263-1271.
[206] Scharer, C., T. Lehmann, F. Naundorf, W. Taube and K. Hubner 2019. The faster, the better? Relationships between run-up speed, the degree of difficulty (D-score), height and length of flight on vault in artistic gymnastics.PLoS One 14(3): e0213310.
[207] Schilaty, N. D., N. A. Bates, S. Kruisselbrink, A. J. Krych and T. E. Hewett 2020. Linear Discriminant Analysis Successfully Predicts Knee Injury Outcome From Biomechanical Variables.Am J Sports Med 48(10): 2447-2455.
[208] Schilaty, N. D., A. L. McPherson, T. Nagai and N. A. Bates 2022. Arthrogenic muscle inhibition manifests in thigh musculature motor unit characteristics after anterior cruciate ligament injury.Eur J Sport Sci: 1-11.
[209] Schmiedmayer, H.B., Kastner, J. 1999. Parameters inflfluencing the accuracy of the point of force application determined with piezoelectric force plates.J. Biomech 32: 1237–1242.
[210] Schwartz, M.H. and Rozumalski, A., 2005. A new method for estimating joint parameters from motion data.J. Biomech 38: 107–116.
[211] Sessa, S., M. Zecca, Z. Lin, et al. 2013. A Methodology for the Performance Evaluation of Inertial Measurement Units.Journal of Intelligent & Robotic Systems volume 71: 143-157.
[212] Sharma, P. and N. Maffulli 2006. Biology of tendon injury: healing,modeling and remodeling.J Musculoskelet Neuronal Interact 6(2): 181-190.
[213] Shayestehpour, H., J. Rasmussen, P. Galibarov and C. Wong 2021. An articulated spine and ribcage kinematic model for simulation of scoliosis deformities.Multibody System Dynamics 53(2): 115-134.
[214] Sherry, M. A., T. S. Johnston and B. C. Heiderscheit 2015. Rehabilitation of acute hamstring strain injuries.Clin Sports Med 34(2): 263-284.
[215] Shourijeh, M. S. and J. McPhee 2015. Foot-ground contact modeling within human gait simulations: from Kelvin-Voigt to hyper-volumetric models.Multibody System Dynamics 35: 393-407.
[216] Sigal, L., A. Balan and M. J. Black. 2010. HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion.In International Journal of Computer Vision 87: 1-2.
[217] Silver, F. H., D. L. Christiansen, P. B. Snowhill and Y. Chen 2000. Role of storage on changes in the mechanical properties of tendon and self-assembled collagen fibers.Connect Tissue Res 41(2): 155-164.
[218] Slawinski, J., A. Bonnefoy, J. M. Leveque, et al. 2010. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start.J Strength Cond Res 24(4): 896-905.
[219] Slawinski, J., R. Dumas, L. Cheze, et al. 2012. 3D kinematic of bunched, medium and elongated sprint start.Int J Sports Med 33(7): 555-560.
[220] Suderman, a. L., B. Krishnamoorthy and A. N. Vasavada 2012. Neck muscle paths and moment arms are significantly affected by wrapping surface parameters.Comput Methods Biomech Biomed Engin 15(7): 735-744.
[221] Sueda, S., A. Kaufman and D. K. Pai (2008). Musculotendon Simulation for Hand Animation. ACM Transaction on Graphics (Proceedings of SIGGRAPH).
[222] Suzuki, Y., T. Inoue and T. Nomura 2018. A Simple Algorithm for Assimilating Marker-Based Motion Capture Data During Periodic Human Movement Into Models of Multi-Rigid-Body Systems.Front Bioeng Biotechnol 6: 141.
[223] Takagi, H., M. Nakashima, Y. Sato, K. Matsuuchi and R. H. Sanders 2016. Numerical and experimental investigations of human swimming motions.J Sports Sci 34(16): 1564-1580.
[224] Tarlochan, R., S. Ramesh and B. M. Hillberry 2002. DYNAMIC ANALYSIS OF THE HUMAN KNEE.Biomedical Engineering: Applications, Basis and Communications 14(3): 122-126.
[225] Thelen, D.G., Anderson, F.C. 2006. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.J. Biomech. 39: 1107–1115
[226] Thompson, W. K., E. E. Caldwell, N. J. Newby, et al. (2014). Integrated Biomechanical Modeling of Lower Body Exercises on the Advanced Resistive Exercise Device (ARED) Using LifeMOD. 44th International Conference on Environmental Systems 13-17.
[227] Trasolini, N. A., K. F. Nicholson, J. Mylott, et al. 2022. Biomechanical Analysis of the Throwing Athlete and Its Impact on Return to Sport.Arthrosc Sports Med Rehabil 4(1): e83-e91.
[228] Tresch, M. C., V. C. Cheung and A. d'Avella 2006. Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 95(4): 2199-2212.
[229] Vecchio A. D., Úbeda A., Sartori M., et al. 2018. Central nervous system modulates the neuromechanical delay in a broad range for the control of muscle force.Journal of Applied Physiology 125(5): 1404-1410.
[230] Vercher-Martinez, A., E. Giner, C. Arango and F. J. Fuenmayor 2015. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone. J Mech Behav Biomed Mater 42: 243-256.
[231] Virmavirta, M., J. Isolehto, P. Komi, et al. 2009. Take-off analysis of the Olympic ski jumping competition (HS-106 m).Journal of Biomechanics 42(8): 1095-1101.
[232] Walter, J. R., M. Gunther, D. F. B. Haeufle and S. Schmitt 2021. A geometry-and muscle-based control architecture for synthesising biological movement.Biol Cybern 115(1): 7-37.
[233] Wang, X. and J. S. Nyman 2007. A novel approach to assess post-yield energy dissipation of bone in tension.Journal of Biomechanics 40(3): 674–677.
[234] Wang, Y. X., Z. L. Li, J. Li, et al. 2019. Effect of medial meniscus extrusion on arthroscopic surgery outcome in the osteoarthritic knee associated with medial meniscus tear: a minimum 4-year follow-up.Chin Med J (Engl) 132(21): 2550-2558.
[235] Wang, Y., S. Yan, J. Zeng and K. Zhang 2020. The biomechanical effect of different posterior tibial slopes on the tibiofemoral joint after posterior-stabilized total knee arthroplasty.J Orthop Surg Res 15(1): 320.
[236] Waterval, N. F. J., F. Nollet, J. Harlaar and M. A. Brehm 2019. Modifying ankle foot orthosis stiffness in patients with calf muscle weakness: gait responses on group and individual level.J Neuroeng Rehabil 16(1): 120.
[237] Wellman, A. D., S. C. Coad, G. C. Goulet and C. P. Mclellan 2016. Quantification of competitive game demands of NCAA division i college football players using global positioning systems. J. Strength Cond. Res. 30: 11-19.
[238] Werkhausen, A., N. J. Cronin, K. Albracht, et al. 2019. Training-induced increase in Achilles tendon stiffness affects tendon strain pattern during running.PeerJ 7: e6764.
[239] Winter, D. A. (2009). Biomechanics and Motor Control of Human Movement. New Jersey, John Wiley & Sons, Inc.
[240] Winters, J. M. 1995. An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models.Journal of Biomechanical Engineering 23: 359-374.
[241] Winters, T. M., M. Takahashi, R. L. Lieber and S. R. Ward 2011. Whole muscle length-tension relationships are accurately modeled as scaled sarcomeres in rabbit hindlimb muscles.Journal of Biomechanics 44(1): 109-115.
[242] Wolfsperger, F., F. Meyer and M. Gilgien 2021. The Snow-Friction of Freestyle Skis and Snowboards Predicted From Snow Physical Quantities.Frontiers in Mechanical Engineering 7.
[243] Yeadon, M. R. 1990. The simulation of aerial movement--II. A mathematical inertia model of the human body.Journal of Biomechanics 23(1): 67-74.
[244] Yeadon, M. R. 1993. The biomechanics of twisting somersaults. Part IV: Partitioning performances using the tilt angle.J Sports Sci 11(3): 219-225.
[245] Yeadon, M. R. and M. J.Hiley 2014. The control of twisting somersaults.Journal of Biomechanics 47(6): 1340-1347.
[246] Yeh, I. C., C. M. Chang, K. C. Chen, W. C. Hong and Y. H. Lu 2015. The influence of functional fitness and cognitive training of physical disabilities of institutions.Scientific World Journal 2015: 686498.
[247] Yin, P., J. S. Li, W. A. Kernkamp, et al. 2017. Analysis of in-vivo articular cartilage contact surface of the knee during a step-up motion.Clin Biomech (Bristol, Avon) 49: 101-106.
[248] Yu, B. and J. G. Hay 1996. Optimum phase ratio in the triple jump.Journal of Biomechanics 29(10): 1283-1289.
[249] Yuan, Z. M., M. Li, C. Y. Ji, et al. 2019. Steady hydrodynamic interaction between human swimmers.J R Soc Interface 16(150): 20180768.
[250] Zajac, F. E. 1989. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control.Critical Reviews in Biomedical Engineering 17(4): 359-411.
[251] Zatsiorsky, V. M. (2000). biomechanics in sport. Oxford, Blackwell Science.
[252] Zhang, J., T. Pan, Y. Liu and J. H. Wang 2010. Mouse treadmill running enhances tendons by expanding the pool of tendon stem cells (TSCs) and TSC-related cellular production of collagen.J Orthop Res 28(9): 1178-1183.
[253] Zhang, J. and J. H. Wang 2010. Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy.J Orthop Res 28(5): 639-643.
[254] Zhang, X., Z. Yue and J. Wang 2017. Robotics in Lower-Limb Rehabilitation after Stroke.Behav Neurol 2017: 3731802.
[255] Zonnino, A. and F. Sergi 2020. Model-based estimation of individual muscle force based on measurements of muscle activity in forearm muscles during isometric tasks.IEEE Transactions on Biomedical Engineering 67(1): 134-145.
[256] Zoppirolli, C., K. Hébert-Losier, H.-C. Holmberg and B. Pellegrini 2020. Biomechanical determinants of cross-country skiing performance A systematic review.Journal of Sports Sciences 38(1).
[257] Zou, Y., A. Libanori, J. Xu, A. Nashalian and J. Chen 2020. Triboelectric Nanogenerator Enabled Smart Shoes for Wearable Electricity Generation.Research (Wash D C) 2020: 7158953.
参考文献
[1] Altmann S. 1986.Rotations, Quaternions, and Double Groups (Oxford University Press).
[2] Ball R S. 1876.The Theory of Screws: A Study in the Dynamics of a Rigid Body (Hodges, Forster and Co., Dublin).
[3] Beech R. 2009.The practical illustrated encyclopedia of origami: the complete guide to the art of paperfolding (Anness).
[4] Beggs J S. 1966.Advanced Mechanism (Macmillan).
[5] Belcastro S, Hull T C. 2002. Modelling the folding of paper into three dimensions using affine transformations, Linear Algebra its Applications, 348: 273-282.
[6] Bennett G T. 1903. A new mechanism,Engineering, 76: 777.
[7] Bricard R. 1927. Leçons de cinématique Tome II Cinématique Appliquée,Gauthier-Villars, Paris.
[8] Cai J. 2016. Kinematic analysis of foldable plate structures with rolling joints,Journal of Mechanisms and Robotics, 8: 034502.
[9] Cai J, Deng X, Xu Y, Feng J. 2016. Motion analysis of a foldable barrel vault based on regular and irregular Yoshimura origami,Journal of Mechanisms and Robotics, 8: 021017.
[10] Cai J, Deng X, Zhou Y, Feng J, Tu Y. 2015. Bistable behavior of the cylindrical origami structure with Kresling pattern,Journal of Mechanical Design, 137: 061406.
[11] Cai J, Liu Y, Ma R, Feng J, Zhou Y. 2017. Nonrigidly foldability analysis of Kresling cylindrical origami,Journal of Mechanisms and Robotics, 9: 041018.
[12] Chen X, Feng H, Ma J, Chen Y. 2019a. A plane linkage and its tessellation for deployable structure,Mechanism and Machine Theory, 142: 103605.
[13] Chen Y, Chai W H. 2011. Bifurcation of a special line and plane symmetric Bricard linkage,Mechanism and Machine Theory, 46: 515-533.
[14] Chen Y, Fan L, Bai Y, Feng J, Sareh P. 2020. Assigning mountain-valley fold lines of flat-foldable origami patterns based on graph theory and mixed-integer linear programming,Computers and Structures, 239: 106328.
[15] Chen Y, Feng H, Ma J, Peng R, You Z. 2016. Symmetric waterbomb origami,Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472: 20150846.
[16] Chen Y, Lv W, Li J, You Z. 2017. An extended family of rigidly foldable origami tubes,Journal of Mechanisms and Robotics, 9: 021002.
[17] Chen Y, Lv W, Peng R, Wei G. 2019b. Mobile assemblies of four-spherical-4R-integrated linkages and the associated four-crease-integrated rigid origami patterns,Mechanism and Machine Theory, 142: 103613.
[18] Chen Y, Peng R, You Z. 2015. Origami of thick panels,Science, 349: 396-400.
[19] Chen Y, You Z. 2009. Two-fold symmetrical 6R foldable frame and its bifurcations,International Journal of Solids Structures, 46: 4504-4514.
[20] Chen Z, Wu T, Nian G, Shan Y, Liang X, Jiang H, Qu S. 2019c. Ron Resch origami pattern inspired energy absorption structures,Journal of Applied Mechanics, 86: 011005.
[21] Chiang C-H. 1988.Kinematics of Spherical Mechanisms (Cambridge University Press).
[22] Choi G P, Dudte L H, Mahadevan L. 2019. Programming shape using kirigami tessellations,Nature materials, 18: 999-1004.
[23] Choi G P, Dudte L H, Mahadevan L. 2021. Compact reconfigurable kirigami,Physical Review Research, 3: 043030.
[24] Chu C C, Keong C K. 2017. The review on tessellation origami inspired folded structure. InAIP Conference Proceedings, 020025. AIP Publishing LLC.
[25] Connelly R, Sabitov I, Walz A. 1997. The bellows conjecture,Beitr. Algebra Geom, 38: 1-10.
[26] Coulais C, Sabbadini A, Vink F, van Hecke M. 2018. Multi-step self-guided pathways for shape-changing metamaterials,Nature materials, 561: 512-515.
[27] Dai J S. 2012. Finite displacement screw operators with embedded Chasles’ motion,Journal of Mechanisms and Robotics, 4: 041002.
[28] Dai J S, Rees Jones J. 1999. Mobility in metamorphic mechanisms of foldable/erectable kinds,Journal of Mechanical Design, 121: 375–382.
[29] Davies T. 1981. Kirchhoff's circulation law applied to multi-loop kinematic chains,Mechanism and Machine Theory, 16: 171-183.
[30] De Temmerman I a N, Mollaert M, Van Mele I a T, De Laet I a L. 2007. Design and analysis of a foldable mobile shelter system,International Journal of Space Structures, 22: 161-168.
[31] Demaine E D, O'Rourke J. 2007.Geometric folding algorithms: linkages, origami, polyhedra (Cambridge university press).
[32] Denavit J, Hartenberg R S. 1955. A kinematic notation for lower-pair mechanisms based on matrices,ASME Journal of Applied Mechanics, 22: 215-221.
[33] Deng A, Ji B, Zhou X, You Z. 2020. Geometric design and mechanical properties of foldcores based on the generalized Resch patterns,Thin-Walled Structures, 148: 106516.
[34] Deng X, Zhao J, Cai J, Liu X. 2022. Tunable origami metamaterial with arbitrary single-curvature configuration,Mechanism and Machine Theory, 171: 104745.
[35] Edmondson B J, Lang R J, Magleby S P, Howell L L. 2014. An offset panel technique for thick rigidily foldable origami. InInternational Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V05BT08A054. American Society of Mechanical Engineers.
[36] Edmondson B J, Lang R J, Morgan M R, Magleby S P, Howell L L. 2015. Thick rigidly foldable structures realized by an offset panel,Origami 6: 149-161.
[37] Evans T A, Lang R J, Magleby S P, Howell L L. 2015a. Rigidly foldable origami gadgets and tessellations,Royal Society open science, 2: 150067.
[38] Evans T A, Lang R J, Magleby S P, Howell L L. 2015b. Rigidly foldable origami twists,Origami 6: 119-130.
[39] Fang H, Zhang Y, Wang K. 2017. Origami-based earthworm-like locomotion robots,Bioinspiration and Biomimetics, 12: 065003.
[40] Farnham J, Hull T C, Rumbolt A. 2022. Rigid folding equations of degree-6 origami vertices,Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 478: 20220051.
[41] Fei L J, Sujan D. 2013. Origami theory and its applications: a literature review,World Academy of Science, Engineering Technology: 1131-1135.
[42] Felton S, Tolley M, Demaine E, Rus D, Wood R. 2014. A method for building self-folding machines,Science, 345: 644-646.
[43] Feng F, Dang X, James R D, Plucinsky P. 2020a. The designs and deformations of rigidly and flat-foldable quadrilateral mesh origami,Journal of the Mechanics Physics of Solids, 142: 104018.
[44] Feng H, Ma J, Chen Y. 2020b. Rigid folding of generalized waterbomb origami tubes,Chinese Journal of Mechanical engineering, 56: 143-159.
[45] Feng H, Ma J, Chen Y, You Z. 2018a. Twist of tubular mechanical metamaterials based on waterbomb origami,Scientific reports, 8: 1-13.
[46] Feng H, Peng R, Ma J, Chen Y. 2018b. Rigid foldability of generalized triangle twist origami pattern and its derived 6R linkages,Journal of Mechanisms and Robotics, 10: 051003.
[47] Feng H, Peng R, Zang S, Ma J, Chen Y. 2020c. Rigid foldability and mountain-valley crease assignments of square-twist origami pattern,Mechanism and Machine Theory, 152: 103947.
[48] Filipov E, Liu K, Tachi T, Schenk M, Paulino G H. 2017. Bar and hinge models for scalable analysis of origami,International Journal of Solids Structures, 124: 26-45.
[49] Filipov E T, Tachi T, Paulino G H. 2015. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials,Proceedings of the National Academy of Sciences, 112: 12321-12326.
[50] Fonseca L M, Savi M A. 2021. On the symmetries of the origami waterbomb pattern: kinematics and mechanical investigations,Meccanica, 56: 2575-2598.
[51] Gan W, Pellegrino S. 2003. Closed-loop deployable structures. In44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1450.
[52] Gan W W, Pellegrino S. 2006. Numerical approach to the kinematic analysis of deployable structures forming a closed loop,Proceedings of the institution of mechanical engineers, Part C: Journal of Mechanical Engineering Science, 220: 1045-1056.
[53] Georgakopoulos S V, Zekios C L, Sattar-Kaddour A, Hamza M, Biswas A, Clark B, Ynchausti C, Howell L L, Magleby S P, Lang R J. 2021. Origami antennas,IEEE Open Journal of Antennas Propagation, 2: 1020-1043.
[54] Ghassaei A, Demaine E D, Gershenfeld N. 2018. Fast, interactive origami simulation using GPU computation,Origami 7: 1151-1166. http://origamisimulator.org.
[55] Gillman A, Fuchi K, Buskohl P. 2018. Truss-based nonlinear mechanical analysis for origami structures exhibiting bifurcation and limit point instabilities,International Journal of Solids and Structures, 147: 80-93.
[56] Gogu G. 2005. Mobility of mechanisms: a critical review,Mechanism and Machine Theory, 40: 1068-1097.
[57] Goldman F. 2011. Using the snapology technique to teach convex polyhedra. InFifth International Meeting of Origami Science, Mathematics, and Education, 99-110.
[58] Grünbaum B, Shephard G C. 1987.Tilings and Patterns (Courier Dover Publications).
[59] Gu Y, Chen Y. 2020. Origami cubes with one-DOF rigid and flat foldability,International Journal of Solids and Structures, 207: 250-261.
[60] Gu Y, Chen Y. 2021. One-DOF origami boxes with rigid and flat foldability. InIFToMM Asian conference on Mechanism and Machine Science, 80-88. Springer.
[61] Gu Y, Wei G, Chen Y. 2021. Thick-panel origami cube,Mechanism and Machine Theory, 164: 104411.
[62] Guest S, Pellegrino S. 1992. Inextensional wrapping of flat membranes. InProceedings of the First International Seminar on Structural Morphology. Citeseer.
[63] Guest S, Pellegrino S. 1996a. A new concept for solid surface deployable antennas,Acta astronautica, 38: 103-113.
[64] Guest S D, Pellegrino S. 1994a. The folding of triangulated cylinders, part I: geometric considerations,Journal of Applied Mechanics.
[65] Guest S D, Pellegrino S. 1994b. The folding of triangulated cylinders, part II: the folding process,Journal of Applied Mechanics.
[66] Guest S D, Pellegrino S. 1996b. The folding of triangulated cylinders, part III: experiments,Journal of Applied Mechanics.
[67] Hagiwara I. 2008. From Origami to" Origamics",The Japan Journal, 5: 22-25.
[68] Hamilton W R. 1866.Elements of quaternions (London: Longmans, Green, & Company).
[69] Hartenberg R S, Danavit J. 1964.Kinematic synthesis of linkages (New York: McGraw-Hill).
[70] He Z, Guest S D. 2020. On rigid origami II: quadrilateral creased papers,Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 476: 20200020.
[71] Howell L L. 2013.Compliant Mechanisms (Springer: 21st century kinematics).
[72] Howell L L, Olsen B M, Magleby S P. 2013.Handbook of Compliant Mechanisms.
[73] Huang Z, Li Q. 2002. General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators,The International Journal of Robotics Research, 21: 131-145.
[74] Huang Z, Li Q. 2003. Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method,The International Journal of Robotics Research, 22: 59-79.
[75] Hull T. 2012.Project Origami: Activities for Exploring Mathematics (CRC Press).
[76] Hull T C. 2014. Counting mountain-valley assignments for flat folds: arXiv preprint arXiv: 1410.5022.
[77] Hull T C, Tachi T. 2017. Double-line rigid origami. InProceedings of the 11th Asian Forum on Graphic Science. Tokyo.
[78] Hunt K H. 1978.Kinematic geometry of mechanisms (Oxford University Press, USA).
[79] Iniguez-Rabago A, Li Y, Overvelde J T. 2019. Exploring multistability in prismatic metamaterials through local actuation, Nature Communications, 10: 1-10.
[80] Ionescu T G, Antonescu P, Biro I, Bögelsack G, Breteler A K. 2003. Terminology for the mechanism and machine science,Mechanism and Machine Theory, 38: 767-901.
[81] Izmestiev I. 2017. Classification of flexible Kokotsakis polyhedra with quadrangular base,International Mathematics Research Notices, 2017: 715-808.
[82] Jeong D, Lee K. 2018. Design and analysis of an origami-based three-finger manipulator,Robotica, 36: 261-274.
[83] Jiao Z, Ji C, Zou J, Yang H, Pan M. 2019a. Vacuum‐powered soft pneumatic twisting actuators to empower new capabilities for soft robots,Advanced Materials Technologies, 4: 1800429.
[84] Jiao Z, Zhang C, Wang W, Pan M, Yang H, Zou J. 2019b. Advanced artificial muscle for flexible material‐based reconfigurable soft robots,Advanced Science, 6: 1901371.
[85] Justin J. 1986. Mathematics of origami, part 9,British Origami, 118: 28-30.
[86] Justin J. 1994. Mathematical remarks about origami bases,Symmetry: Culture Science, 5: 153-165.
[87] Kawasaki T, Yoshida M. 1988. Crystallographic flat origamis,Memoirs of the Faculty of Science, Kyushu University. Series A, Mathematics, 42: 153-157.
[88] Kokotsakis A. 1933. Über bewegliche polyeder,Mathematische Annalen, 107: 627-647.
[89] Kresling B. 2002. 'Folded tubes as compared to kikko (‘tortoise-shell55) bamboo.' in,Origami 3 (Barnes Noble).
[90] Kshad M A E, Popinigis C, Naguib H E. 2018. 3D printing of Ron-Resch-like origami cores for compression and impact load damping,Smart Materials Structures, 28: 015027.
[91] Ku J S, Demaine E D. 2016. Folding flat crease patterns with thick materials,Journal of Mechanisms and Robotics, 8: 031003.
[92] Kuipers J B. 1999.Quaternions and rotation sequences: a primer with applications to orbits, aerospace, and virtual reality (Princeton university press).
[93] Kumar P, Pellegrino S. 2000. Computation of kinematic paths and bifurcation points,International Journal of Solids and Structures, 37: 7003-7027.
[94] Kuribayashi K, Tsuchiya K, You Z, Tomus D, Umemoto M, Ito T, Sasaki M. 2006. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil,Materials Science Engineering: A, 419: 131-137.
[95] Lam T. 2003.Hamilton's quaternions (Elsevier).
[96] Lang R J. 2015. Treemaker. http://www.langorigami.com/article/treemaker/.
[97] Lang R J. 2017.Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami (AK Peters/CRC Press).
[98] Lang R J, Brown N, Ignaut B, Magleby S, Howell L. 2020. Rigidly foldable thick origami using designed-offset linkages,Journal of Mechanisms and Robotics, 12.
[99] Lang R J, Howell L. 2018. Rigidly foldable quadrilateral meshes from angle arrays,Journal of Mechanisms and Robotics, 10.
[100] Lang R J, Howell L L. 2022. Laminar emergent flexural fold joints: Planar compliant mechanisms with large-angle near-revolute motion,Extreme Mechanics Letters, 52: 101657.
[101] Lang R J, Magleby S, Howell L. 2016. Single degree-of-freedom rigidly foldable cut origami flashers,Journal of Mechanisms and Robotics, 8: 031005.
[102] Lang R J, Nelson T, Magleby S, Howell L. 2017. Thick rigidly foldable origami mechanisms based on synchronized offset rolling contact elements,Journal of Mechanisms and Robotics, 9: 021013.
[103] Lang R J, Tolman K A, Crampton E B, Magleby S P, Howell L L. 2018. A review of thickness-accommodation techniques in origami-inspired engineering,Applied Mechanics Reviews, 70.
[104] Lee D-Y, Kim S-R, Kim J-S, Park J-J, Cho K-J. 2017. Origami wheel transformer: a variable-diameter wheel drive robot using an origami structure,Soft robotics, 4: 163-180.
[105] Lee T-U, Yang X, Ma J, Chen Y, Gattas J M. 2019. Elastic buckling shape control of thin-walled cylinder using pre-embedded curved-crease origami patterns,International Journal of Mechanical Sciences, 151: 322-330.
[106] Li Y. 2020. Motion paths finding for multi-degree-of-freedom mechanisms,International Journal of Mechanical Sciences, 185: 105709.
[107] Li Y, Yin J. 2021. Metamorphosis of three-dimensional kirigami-inspired reconfigurable and reprogrammable architected matter,Materials Today Physics, 21: 100511.
[108] Li Y, Zhang Q, Hong Y, Yin J. 2021. 3D transformable modular Kirigami based programmable metamaterials,Advanced Functional Materials, 31: 2105641.
[109] Lin Y, Yang G, Liang Y, Zhang C, Wang W, Qian D, Yang H, Zou J. 2020. Controllable stiffness origami “skeletons” for lightweight and multifunctional artificial muscles,Advanced Functional Materials, 30: 2000349.
[110] Liu K, Paulino G H. 2016. MERLIN: A MATLAB implementation to capture highly nonlinear behavior of non-rigid origami. InProceedings of IASS Annual Symposia, 1-10. International Association for Shell and Spatial Structures (IASS).
[111] Liu K, Paulino G H. 2018. Highly efficient nonlinear structural analysis of origami assemblages using the MERLIN2 software,Origami 7: 1167-1182.
[112] Liu L, Choi G P, Mahadevan L. 2021a. Wallpaper group kirigami,Proceedings of the Royal Society A: Mathematical, Physical, 477: 20210161.
[113] Liu P, Ma J, Chen Y, Yuan L, Zhao H, Wang K. 2021b. The kinematic analysis and bistable characteristics of the winding origami structure. InInternational Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V08BT08A032. American Society of Mechanical Engineers.
[114] Liu S. 2014. Deployable structure associated with rigid origami and its mechanics, PhD thesis, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
[115] Liu S, Lv W, Chen Y, Lu G. 2016. Deployable prismatic structures with rigid origami patterns,Journal of Mechanisms and Robotics, 8: 031002.
[116] Liu W, Jiang H, Chen Y. 2022. 3D programmable metamaterials based on reconfigurable mechanism modules,Advanced Functional Materials, 32: 2109865.
[117] Liu Z, Fang H, Xu J, Wang K. 2021c. A novel origami mechanical metamaterial based on Miura-variant designs: exceptional multistability and shape reconfigurability,Smart Materials Structures, 30: 085029.
[118] Lv C, Krishnaraju D, Konjevod G, Yu H, Jiang H. 2014. Origami based mechanical metamaterials,Scientific reports, 4: 1-6.
[119] Ma J, Chai S, Chen Y. 2022a. Geometric design, deformation mode, and energy absorption of patterned thin-walled structures,Mechanics of Materials, 168: 104269.
[120] Ma J, Feng H, Chen Y, Hou D, You Z. 2020. Folding of tubular waterbomb,Research, 2020: 8.
[121] Ma J, Jiang X, Chen Y. 2022b. A 3D modular meta-structure with continuous mechanism motion and bistability,Extreme Mechanics Letters, 51: 101584.
[122] Ma J, Song J, Chen Y. 2018. An origami-inspired structure with graded stiffness,International Journal of Mechanical Sciences, 136: 134-142.
[123] Ma J, You Z. 2013. Energy absorption of thin-walled beams with a pre-folded origami pattern,Thin-Walled Structures, 73: 198-206.
[124] Ma J, Zang S, Feng H, Chen Y, You Z. 2021. Theoretical characterization of a non-rigid-foldable square-twist origami for property programmability, International Journal of Mechanical Sciences, 189: 105981.
[125] Magliozzi L, Micheletti A, Pizzigoni A, Ruscica G. 2017. On the design of origami structures with a continuum of equilibrium shapes,Composites Part B: Engineering, 115: 144-150.
[126] Maxwell J C. 1864. On the calculation of the equilibrium and stiffness of frames,The London, Edinburgh, Dublin Philosophical Magazine, 27: 294-299.
[127] Mazzucchi A. 2018. A kinetic module for modular structures based on rigid origami,Nexus Network Journal, 20: 41-57.
[128] McCarthy J M. 1990.Introduction to theoretical kinematics (MIT press).
[129] Meloni M, Cai J, Zhang Q, Sang‐Hoon Lee D, Li M, Ma R, Parashkevov T E, Feng J. 2021. Engineering origami: a comprehensive review of recent applications, design methods, and tools,Advanced Science, 8: 2000636.
[130] Micheletti A, Giannetti I, Mattei G, Tiero A. 2022. Kinematic and Static Design of Rigid Origami Structures: Application to Modular Yoshimura Patterns,Journal of Architectural Engineering, 28: 04022009.
[131] Mitani J. 2017.3D origami art (CRC Press).
[132] Miura K. 1985. Method of packaging and deployment of large membranes in space,The Institute of Space Astronautical Science report: 1-9.
[133] Miura K, Tachi T. 2010. Synthesis of rigid-foldable cylindrical polyhedra,Symmetry: Art Science: 204-213.
[134] Miyashita S, Guitron S, Yoshida K, Li S, Damian D D, Rus D. 2016. Ingestible, controllable, and degradable origami robot for patching stomach wounds. In2016 IEEE international conference on robotics and automation (ICRA), 909-916. IEEE.
[135] Morgan M R, Lang R J, Magleby S P, Howell L L. 2016. Towards developing product applications of thick origami using the offset panel technique,Mechanical Sciences, 7: 69-77.
[136] Mousanezhad D, Kamrava S, Vaziri A. 2017. Origami-based building blocks for modular construction of foldable structures,Scientific reports, 7: 1-8.
[137] Mukhopadhyay T, Ma J, Feng H, Hou D, Gattas J M, Chen Y, You Z. 2020. Programmable stiffness and shape modulation in origami materials: Emergence of a distant actuation feature,Applied Materials Today, 19: 100537.
[138] Myard F E. 1931. Contribution à la géométrie des systèmes articulés,Bulletin de la Société Mathématique de France, 59: 183-210.
[139] Novelino L S, Ze Q, Wu S, Paulino G H, Zhao R. 2020. Untethered control of functional origami microrobots with distributed actuation,Proceedings of the National Academy of Sciences, 117: 24096-24101.
[140] Onal C D, Wood R J, Rus D. 2012. An origami-inspired approach to worm robots,IEEE/ASME Transactions on Mechatronics, 18: 430-438.
[141] Ou J, Ma Z, Peters J, Dai S, Vlavianos N, Ishii H. 2018. KinetiX-designing auxetic-inspired deformable material structures,Computers Graphics, 75: 72-81.
[142] Overvelde J T, De Jong T A, Shevchenko Y, Becerra S A, Whitesides G M, Weaver J C, Hoberman C, Bertoldi K. 2016. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom,Nature communications, 7: 1-8.
[143] Overvelde J T, Weaver J C, Hoberman C, Bertoldi K. 2017. Rational design of reconfigurable prismatic architected materials,Nature communications, 541: 347-352.
[144] Pehrson N A, Magleby S P, Lang R J, Howell L L. 2016. Introduction of monolithic origami with thick-sheet materials. InProceedings of IASS Annual Symposia, 1-10. International Association for Shell and Spatial Structures (IASS).
[145] Pellegrino S. 1990. Analysis of prestressed mechanisms, International Journal of Solids and Structures, 26: 1329-1350.
[146] Pellegrino S. 1993. Structural computations with the singular value decomposition of the equilibrium matrix, International Journal of Solids and Structures, 30: 3025-3035.
[147] Pellegrino S, Calladine C R. 1986. Matrix analysis of statically and kinematically indeterminate frameworks,International Journal of Solids and Structures, 22: 409-428.
[148] Peng R, Chen Y. 2014. The metamaterial generated from rigid-origami pattern. Inthe 6th International Meeting on Origami in Science, Mathematics and Education, Tokyo, Japan, August.
[149] Peng R, Ma J, Chen Y. 2018. The effect of mountain-valley folds on the rigid foldability of double corrugated pattern,Mechanism and Machine Theory, 128: 461-474.
[150] Pratapa P P, Liu K, Paulino G H. 2019. Geometric mechanics of origami patterns exhibiting Poisson’s ratio switch by breaking mountain and valley assignment,Physical review letters, 122: 155501.
[151] Pratapa P P, Liu K, Paulino G H. 2020. Kinematics of the morph origami pattern and its hybrid states. InInternational Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V010T010A076. American Society of Mechanical Engineers.
[152] Pratapa P P, Liu K, Vasudevan S P, Paulino G H. 2021. Reprogrammable kinematic branches in tessellated origami structures,Journal of Mechanisms and Robotics, 13: 031004.
[153] Qiu C, Zhang K, Dai J S. 2016. Repelling-screw based force analysis of origami mechanisms,Journal of Mechanisms and Robotics, 8: 031001.
[154] Rafsanjani A, Pasini D. 2016. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs,Extreme Mechanics Letters, 9: 291-296.
[155] Randlett S. 1963.The Art of Origami: Paper Folding, Traditional and Modern (Faber & Faber).
[156] Resch R D. 1965. Geometrical device having articulated relatively movable sections. U.S. Patents: 3,201,894. In.
[157] Resch R D. 1968. Self-supporting structural unit having a series of repetitious geometrical modules. In.: U.S. Patent 3407558.
[158] Resch R D. 1973. The topological design of sculptural and architectural systems. InProceedings of the June 4-8, 1973, national computer conference and exposition, 643-650.
[159] Reuleaux F. 1875.The Kinematics of Machinery (Macmillan and Co., London).
[160] Salazar R, Murthy S, Pellazar C, Stoica A. 2017. Transformers for lunar extreme environments: large origami deployable solar reflectors. In2017 IEEE Aerospace Conference, 1-7. IEEE.
[161] Sarrus P. 1853. Note Sur la Transformation des Mouvements Rectilignes Alternatifs, en Mouvements Circulaires, et Reciproquement, Comptes. Rendus,Acad. Sci., Paris, 36: 1036.
[162] Schenk M, Guest S D. 2011. Origami folding: a structural engineering approach,Origami 5: 291-304.
[163] Schenk M, Guest S D. 2013. Geometry of Miura-folded metamaterials,Proceedings of the National Academy of Sciences, 110: 3276-3281.
[164] Song C, Chen Y. 2012. Multiple linkage forms and bifurcation behaviours of the double-subtractive-Goldberg 6R linkage,Mechanism and Machine Theory, 57: 95-110.
[165] Stachel H. 2010. A kinematic approach to Kokotsakis meshes,Computer Aided Geometric Design, 27: 428-437.
[166] Stavric M, Wiltsche A. 2014. Quadrilateral patterns for rigid folding structures,International journal of architectural computing, 12: 61-79.
[167] Tachi T. 2009. Generalization of rigid-foldable quadrilateral-mesh origami,Journal of the International Association for Shell Spatial Structures, 50: 173-179.
[168] Tachi T. 2010a. "Freeform Origami", www.tsg.ne.jp/TT/software/.
[169] Tachi T. 2010b. Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh,Advances in architectural geometry, 14: 203-215.
[170] Tachi T. 2010c. Geometric considerations for the design of rigid origami structures. InProceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, 458-460. Elsevier Ltd.
[171] Tachi T. 2010d. One-DOF cylindrical deployable structures with rigid quadrilateral panels. InSymposium of the International Association for Shell and Spatial Structures (50th. 2009. Valencia). Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures: Proceedings. Editorial Universitat Politècnica de València.
[172] Tachi T. 2011. Rigid-foldable thick origami,Origami 5: 253-264.
[173] Tachi T. 2013. Designing freeform origami tessellations by generalizing Resch's patterns, Journal of Mechanical Design, 135: 111006.
[174] Tachi T, Masubuchi M, Iwamoto M. 2012. Rigid origami structures with vacuumatics: geometric considerations. InProc. the IASS-APCS Seoul, Korea, 21–24 May.
[175] Tang J, Tian M, Wang C, Wang X, Mao H. 2021. A novel scheme of folding discretized surfaces of revolution inspired by waterbomb origami,Mechanism and Machine Theory, 165: 104431.
[176] Tang Y, Li Y, Hong Y, Yang S, Yin J. 2019. Programmable active kirigami metasheets with more freedom of actuation,Proceedings of the National Academy of Sciences, 116: 26407-26413.
[177] Tarnai T. 2001. 'Infinitesimal and finite mechanisms.' in,Deployable Structures (Springer, New York 2001).
[178] Tolman K A, Lang R J, Magleby S P, Howell L L. 2017. Split-vertex technique for thickness-accommodation in origami-based mechanisms. InInternational Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V05BT08A054. American Society of Mechanical Engineers.
[179] Turner N, Goodwine B, Sen M. 2016. A review of origami applications in mechanical engineering,Proceedings of the institution of mechanical engineers, Part C: Journal of Mechanical Engineering Science, 230: 2345-2362.
[180] Varadarajan V. 1974.Lie GRoups, Lie Algebras, and Their Representations (Prentice-Hall).
[181] Vasudevan S P, Pratapa P P. 2021. Origami metamaterials with near-constant poisson functions over finite strains,Journal of Engineering Mechanics, 147: 04021093.
[182] Wang C, Guo H, Liu R, Deng Z. 2022a. A programmable origami-inspired space deployable structure with curved surfaces,Engineering Structures, 256: 113934.
[183] Wang C, Li J, Zhang D. 2021. Optimization design method for kirigami-inspired space deployable structures with cylindrical surfaces,Applied Mathematical Modelling, 89: 1575-1598.
[184] Wang K, Chen Y. 2011. Folding a patterned cylinder by rigid origami,Origami 5: 265-276.
[185] Wang L-C, Song W-L, Fang D. 2018. Twistable origami and kirigami: from structure-guided smartness to mechanical energy storage,ACS applied materials and interfaces, 11: 3450-3458.
[186] Wang L C, Song W L, Zhang Y J, Qu M J, Zhao Z, Chen M, Yang Y, Chen H, Fang D. 2020. Active reconfigurable tristable square‐twist origami,Advanced Functional Materials, 30: 1909087.
[187] Wang S, Gao Y, Huang H, Li B, Guo H, Liu R. 2022b. Design of deployable curved-surface rigid origami flashers,Mechanism and Machine Theory, 167: 104512.
[188] Warisaya K, Hamanaka H, Tokolo A, Tachi T. 2021. Auxetic Structures Based on Rhombic Tiling. InInternational Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V08BT08A031. American Society of Mechanical Engineers.
[189] Watanabe N, Kawaguchi K. 2009. The method for judging rigid foldability,Origami 4: 165-174.
[190] Webb D, Hirsch B, Bach V, Sauder J F, Bradford S, Thomson M. 2016. Starshade mechanical architecture & technology effort. In3rd AIAA Spacecraft Structures Conference, 2165.
[191] Wei G, Dai J S. 2014. Origami-inspired integrated planar-spherical overconstrained mechanisms,Journal of Mechanical Design, 136: 051003.
[192] Wei G, Ding X, Dai J S. 2010. Mobility and geometric analysis of the Hoberman switch-pitch ball and its variant,Journal of Mechanisms and Robotics, 2: 031010.
[193] Wohlhart K. 2001. Regular polyhedral linkages. InProceedings of the 2nd Workshop on Computational Kinematics, Seoul, 239-248.
[194] Wu W, You Z. 2010. Modelling rigid origami with quaternions and dual quaternions,Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 466: 2155-2174.
[195] Wu W, You Z. 2011. A solution for folding rigid tall shopping bags,Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467: 2561-2574.
[196] Xu R, Zhang X, Ma J, Chen Y, Cao Y, You Z. 2018. Folding a rigid flat surface around a square hub. InInternational Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V05BT07A060. American Society of Mechanical Engineers.
[197] Yamaguchi K, Yasuda H, Tsujikawa K, Kunimine T, Yang J. 2022. Graph-theoretic estimation of reconfigurability in origami-based metamaterials,Materials and Design, 213: 110343.
[198] Yang F, Chen Y, Kang R, Ma J. 2016. Truss transformation method to obtain the non-overconstrained forms of 3D overconstrained linkages,Mechanism and Machine Theory, 102: 149-166.
[199] Yang F, Zhang M, Ma J, You Z, Yu Y, Chen Y, Paulino G H. 2022a. Design of single degree-of-freedom triangular resch patterns with thick-panel origami,Mechanism and Machine Theory, 169: 104650.
[200] Yang J, Zhang X, Chen Y, You Z. 2022b. Folding arrays of uniform-thickness panels to compact bundles with a single degree of freedom,Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 478: 20220043.
[201] Yang Y, Maiolino P, Chen Y, You Z. 2021. Three-dimensional kinematic metamaterial with tuneable directional permeability, arXiv preprint arXiv:2102.08821.
[202] Yang Y, You Z. 2018a. 3D construction of a tilted cuboid mechanical metamaterial. InASME International Mechanical Engineering Congress and Exposition, V009T012A021. American Society of Mechanical Engineers.
[203] Yang Y, You Z. 2018b. Geometry of transformable metamaterials inspired by modular origami,Journal of Mechanisms and Robotics, 10: 021001.
[204] Yang Y, You Z. 2018c. A modular origami-inspired mechanical metamaterial,Origami 7: 715-730.
[205] Yasuda H, Miyazawa Y, Charalampidis E G, Chong C, Kevrekidis P G, Yang J. 2019. Origami-based impact mitigation via rarefaction solitary wave creation,Science advances, 5: eaau2835.
[206] Yasuda H, Tachi T, Lee M, Yang J. 2017. Origami-based tunable truss structures for non-volatile mechanical memory operation,Nature communications, 8.
[207] Yasuda H, Yein T, Tachi T, Miura K, Taya M. 2013. Folding behaviour of Tachi–Miura polyhedron bellows,Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469: 20130351.
[208] Ye H, Ma J, Zhou X, Wang H, You Z. 2019. Energy absorption behaviors of pre-folded composite tubes with the full-diamond origami patterns,Composite Structures, 221: 110904.
[209] Ye H, Zhou X, Ma J, Wang H, You Z. 2020. Axial crushing behaviors of composite pre-folded tubes made of KFRP/CFRP hybrid laminates,Thin-Walled Structures, 149: 106649.
[210] Yellowhorse A, Lang R J, Tolman K, Howell L L. 2018. Creating linkage permutations to prevent self-intersection and enable deployable networks of thick-origami,Scientific reports, 8: 1-9.
[211] Yellowhorse A D, Brown N, Howell L L. 2020. Design of regular one-dimensional, two-dimensional, and three-dimensional linkage-based tessellations,Journal of Mechanisms and Robotics, 12: 021104
[212] Yoshimura Y. 1955. On the mechanism of buckling of a circular cylindrical shell under axial compression. In.: National Advisory Committee for Aeronautics Technical Memorandum.
[213] You Z, Chen Y. 2011.Motion Structures: Deployable Structural Assemblies of Mechanisms (Crc Press).
[214] Yu Y, Chen Y, Paulino G H. 2019. On the unfolding process of triangular Resch patterns: a finite particle method investigation. InInternational Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V05BT07A048. American Society of Mechanical Engineers.
[215] Zang S, Ma J, You Z, Chen Y. 2022. Deformation characteristics and mechanical properties tuning of a non-rigid square-twist origami structure with rotational symmetry,Thin-Walled Structures, 179: 109570.
[216] Zhai Z, Wang Y, Jiang H. 2018. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness,Proceedings of the National Academy of Sciences, 115: 2032-2037.
[217] Zhakypov Z, Paik J. 2018. Design methodology for constructing multimaterial origami robots and machines,IEEE Transactions on Robotics, 34: 151-165.
[218] Zhang K, Dai J S. 2013. Classification of origami-enabled foldable linkages and emerging applications. InInternational Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V06BT07A024. American Society of Mechanical Engineers.
[219] Zhang K, Fang Y, Fang H, Dai J S. 2010. Geometry and constraint analysis of the three-spherical kinematic chain based parallel mechanism,Journal of Mechanisms and Robotics, 2: 191-200.
[220] Zhang T, Kawaguchi K i, Wu M. 2018. A folding analysis method for origami based on the frame with kinematic indeterminacy,International Journal of Mechanical Sciences, 146: 234-248.
[221] Zhang X, Chen Y. 2018a. The diamond thick-panel origami and the corresponding mobile assemblies of plane-symmetric Bricard linkages,Mechanism and Machine Theory, 130: 585-604.
[222] Zhang X, Chen Y. 2018b. Mobile assemblies of Bennett linkages from four-crease origami patterns,Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474: 20170621.
[223] Zhang X, Chen Y. 2019. Vertex-splitting on a diamond origami pattern,Journal of Mechanisms and Robotics, 11: 031014.
[224] Zhang X, Ma J, Li M, You Z, Wang X, Luo Y, Ma K, Chen Y. 2022. Kirigami-based metastructures with programmable multistability,Proceedings of the National Academy of Sciences, 119: e2117649119.
[225] Zhao Y, Endo Y, Kanamori Y, Mitani J. 2018a. Approximating 3D surfaces using generalized waterbomb tessellations,Journal of Computational Design Engineering, 5: 442-448.
[226] Zhao Y, Kanamori Y, Mitani J. 2018b. Design and motion analysis of axisymmetric 3D origami with generic six-crease bases,Computer Aided Geometric Design, 59: 86-97.
[227] Zhao Y, Li S, Zhang M, Zeng L, Yang Y, Kanamori Y, Mitani J. 2021. Computational design methods for cylindrical and axisymmetric waterbomb tessellations,Computer Aided Geometric Design, 91: 102037.
[228] Zhou C, Wang B, Ma J, You Z. 2016. Dynamic axial crushing of origami crash boxes,International Journal of Mechanical Sciences, 118: 1-12.
[229] Zimmermann L, Shea K, Stanković T. 2020. Conditions for rigid and flat foldability of degree-n vertices in origami,Journal of Mechanisms and Robotics, 12: 011020.
[230] Zimmermann L, Stanković T. 2020. Rigid and flat foldability of a degree-four vertex in origami,Journal of Mechanisms and Robotics, 12: 011004.
[231] Zirbel S A, Lang R J, Thomson M W, Sigel D A, Walkemeyer P E, Trease B P, Magleby S P, Howell L L. 2013. Accommodating thickness in origami-based deployable arrays,Journal of Mechanical Design, 135: 111005.
[232] 陈焱. 2020. 基于机构运动的大变形超材料, 机械工程学报, 56: 2-13.
[233] 杨富富. 2017. 基于桁架方法的空间过约束机构分析与可变多面体设计, 天津大学.