[1] 陈国清,陆大雷,陆卫平.玉米胚乳淀粉合成研究进展[J].中国农学通报,2014,30(33):8-15
[2] Chen J, Zeng B, Zhang M, et al. Dynamic transcriptome landscape of maize embryo and endosperm development[J]. Plant Physiol,2014;166(1):252-264.
[3] Nelson O, Pan D. Starch synthesis in maize endosperms[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46(1): 475-496.
[4] 杜 明,方 玉,李潜龙,等.玉米淀粉调控的研究进展[J].中国农学通报,2021,37(33):8-14.
[5] Xiong Y, Bartle S J, Preston R L. Improved enzymatic method to measure processing effects and starch availability in sorghum grain[J]. Journal of Animal science, 1990, 68(11): 3861.
[6] 郑彦坤.特用玉米营养品质与淀粉体和蛋白质体发育关系的研究进展[J].玉米科学,2019,27(6):89-94.
[7] 韦存虚,张 军,周卫东,等.小麦胚乳小淀粉粒是复粒淀粉的结构观察[J].麦类作物学报,2008,28(5):7
[8] Huang B, Hennen-Bierwagen T A, Myers A M. Functions of multiple genes encoding ADP-Glucose pyrophosphorylase subunits in maize endosperm, embryo, and leaf[J]. Plant Physiology, 2014,164(2): 596-611.
[9] Bhave M R, Lawrence S, Barton C, et al. Identification and molecular characterization of shrunken-2 cDNA clones of maize[J]. The Plant Cell, 1990, 2(6): 581-588.
[10] Hannah L C, Shaw J R, Giroux M J, et al. Maize genes encoding the small subunit of ADP-glucose pyrophosphorylase[J]. Plant Physiology, 2001, 127(1): 173-183.
[11] Nelson O E, Rines H W. The enzymatic deficiency in the waxy mutant of maize[J]. Biochemical and Biophysical Research Communications, 1962, 9(4): 297-300.
[12] Gao M, Wanat J, Stinard P S, et al. Characterization ofdull1, a maize gene coding for a novel starch synthase[J]. The Plant Cell, 1998, 10(3): 399-412.
[13] Harn C, Knight M, Ramakrishnan A, et al. Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm[J]. Plant Molecular Biology, 1998, 37(4): 639-649.
[14] Wang T, Wang M, Hu S, et al. Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population[J]. BMC Plant Biology, 2015, 15(1): 288.
[15] Wu Y, Wang W, Messing J. Balancing of sulfur storage in maize seed[J]. BMC Plant Biology, 2012, 12(1): 77.
[16] Kirihara J A, Petri J B, Messing J. Isolation and sequence of a gene encoding a methionine-rich 10-kDa zein protein from maize[J]. Gene, 1988, 71(2): 359-370.
[17] Swarup S, Timmermans M C P, Chaudhuri S, et al. Determinants of the high-methionine trait in wild and exotic germplasm may have escaped selection during early cultivation of maize[J]. The Plant Journal, 1995, 8(3): 359-368.
[18] Pedersen K, Argos P, Naravana S V, et al. Sequence analysis and characterization of a maize gene encoding a high-sulfur Zein protein of Mr 15,000[J]. Journal of Biological Chemistry, 1986, 261(14): 6279-6284.
[19] Lending C R, Larkins B A. Changes in the zein composition of protein bodies during maize endosperm development[J]. The Plant Cell, 1989, 1(10): 1011-1023.
[20] Qiao Z, Qi W, Wang Q, et al. ZmMADS47 regulates zein gene transcription through interaction with Opaque2[J]. PLoS Genetics,2016,12(4): e1005991.
[21] Schmidt RJ, Burr FA, Burr B. Transposon tagging and molecular analysis of the maize regulatory locus opaque-2[J]. Science, 1987,238:960-963.
[22] Li C, Yue Y, Chen H, et al. The ZmbZIP22 transcription factor. regulates 27-kD γ-zein gene transcription during maize endosperm development[J]. Plant Cell. 2018,30(10):2402-2424.
[23] Feng F, Qi W, Lü Y, et al. OPAQUE11 Is a central hub of the regulatory network for maize endosperm development and nutrient metabolism[J]. Plant Cell,2018 Feb;30(2):375-396.
[24] Li C, Qi W, Liang Z,et al. A SnRK1-<i>Zm</i>RFWD3-Opaque2 Signaling axis regulates diurnal nitrogen accumulation in maize seeds[J]. Plant Cell,2020 ,32(9):2823-2841.
[25] Wang G, Zhang J, Wang G,et al. Proline responding 1 plays a critical role in regulating general protein synthesis and the cell cycle in maize[J]. The Plant Cell,2014,26(6):2582-2600.
[26] Wang G , Sun X , Wang G , et al. Opaque7 Encodes an Acyl-Activating Enzyme-Like. protein that affects storage protein synthesis in maize endosperm[J]. Genetics, 2011,189(4):1281-95.
[27] Kim C S, Hunter B G, Kraft J , et al. A Defective signal peptide in a 19-kD ??-Zein protein causes the unfolded protein response and an opaque endosperm phenotype in the maize De*-B30 mutant[J]. Plant Physiology, 2004, 134(1):380-387.
[28] Coleman C E , Gillikin J W , Boston R S , et al. A defective signal peptide in the maize high-lysine mutant floury 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(15):6828-6831.
[29] Wang G, Qi W W, Wu Q,et al. Identification and characterization of maize floury4 as a novel semidominant opaque mutant that disrupts protein body assembly[J]. Plant Physiology, 2014,165: 582-594.
[30] Holding D R , Otegui M S , Li B , et al. The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation[J]. The Plant Cell Online, 2007, 19(8):2569-2582.
[31] Bertoni, G. Maize opaque1 and protein body formation[J]. Plant Cell, 2012, 24(8):3168-3168.
[32] Yao D , Qi W, Li X , et al. Maize opaque10 encodes a Cereal-Specific protein that is essential for the proper distribution of zeins in endosperm protein bodies[J]. Plos Genetics, 2016, 12(8):e1006270.
[33] Lambert R J, Alexander D E, Mejaya I J. Single kernel selection for increased grain oil in. maize synthetics and high-oil hybrid development[J]. Plant Breeding Reviews, 2004, 24(1): 153-176.
[34] Li H, Peng Z, Yang X, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels[J]. Nature Genetics, 2013, 45(1): 43-50.
[35] Fang H, Fu X, Ge H, et al. Genetic basis of maize kernel oil-related traits revealed by high-density SNP markers in a recombinant inbred line population[J]. BMC Plant Biology, 2021, 21(1): 344.
[36] 韩英佳. 玉米子粒油份相关基因ZmCOPⅡ、SAD的功能研究[D].中国农业大学,2016.
[37] 赵翠格,刘 頔,李凤兰,等.植物种子油脂的生物合成及代谢基础研究进展[J].种子,2010,29(4):56-62.
[38] Gueguen V, Macherel D, Jaquinod M, et al. Fatty acid and lipoic acid biosynthesis in higher plant mitochondria[J]. Journal of Biological Chemistry, 2000, 275(7): 5016-5025.
[39] Thelen J J, Ohlrogge J B. Metabolic engineering of fatty acid biosynthesis in plants[J]. Metabolic Engineering, 2002, 4(1): 12-21.
[40] Beaudoin F E E, Napier J A. Biosynthesis and compartmentation of triacylglycerol in higher plants[M]//Daum G. Lipid Metabolism and Membrane bioiogenesis. Berlin: Springer, 2004: 267-287.
[41] Lee K, Huang A H C. Genes encoding oleosins in maize kernel of inbreds Mo17 and B73[J]. Plant Molecular Biology, 1994, 26(6): 1981-1987.
[42] Ting J L, Lee K, Ratnayake C, et al. Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents[J]. Planta, 1996, 199(1): 158-165.
[43] Berberich T, Harada M, Sugawara K, et al. Two maize genes encoding $\omega-3 fatty acid desaturase and their differential expression to temperature[J]. Plant Molecular Biology, 1998, 36(2): 297-306.
[44] Beló A, Zheng P, Luck S, et al. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize[J]. Molecular Genetics and Genomics, 2008, 279(1): 1-10.
[45] Shen B, Allen W B, Zheng P, et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize[J]. Plant Physiology, 2010, 153(3): 980-987.
[46] 王 野,陈 豪,王小云,等.糯玉米支链淀粉含量与蒸煮品质相关分析[J].吉林农业,2016(23):76.
[47] 张东民,朱 慧,周昱婕,等.玉米opaque2突变体子粒表型及营养成分分析[J].玉米科学,2020,28(4):26-32.
[48] Sethi M, Kumar S, Singh A, et al. Temporal profiling of essential amino acids in developing maize kernel of normal, opaque-2 and QPM germplasm[J]. Physiol Mol Biol Plants, 2020, 26(2): 341-351.
[49] 林必博,周济铭,党占平. 高油玉米品质研究进展[J]. 山西农业科学,2014,42(10):4.
[50] Thomison P R, Geyer A B, Lotz L D, et al. TopCross high oil corn production[J]. Agronomy Journal, 2003, 95(1): 147-154.
参考文献
[1] 郑 荣, 刘建勋, 杨 霞, 等. 河西走廊玉米制种膜下滴灌水肥一体化栽培技术[J]. 农业科技与信息, 2016(7): 104-105.
[2] 张红萍, 张宏彦. 乡村振兴背景下河西地区玉米制种产业发展对策[J]. 甘肃农业, 2021(4): 41-42, 56.
[3] 孙宁科, 赵建华, 孙建好, 等. 河西灌区制种玉米化肥减量技术对制种产量的影响[J]. 中国土壤与肥料, 2021(2):193-198.
[4] 孙酉石, 王淑英, 王玉芝, 等. 回归旋转组合设计方法在玉米模式化栽培研究中的应用[J]. 吉林农业大学学报, 1989, 11(3): 10-12.
[5] 阮培均, 张荣达, 梁黔云. 黔西北山区玉米高产栽培措施数学模型研究[J]. 中国农学通报, 2000, 16(6): 33-35, 38.
[6] 黄文彻, 王永华,潘中涛, 等. 杂交玉米“安单4号”高产栽培数学模型研究[J]. 湖南农业科学, 2008,(6):46-48,72.
[7] 谢业春. 玉米品种农大108优化栽培数学模型的研究[J]. 福建农业学报, 2014, 29(12): 1180-1185.
[8] 郑 伟, 张丽妍, 边丽梅, 等. 氮磷钾配施和密度对玉米产量的效应分析[J]. 江苏农业科学, 2015, 43(5): 67-69.
[9] 杨 哲, 于胜男, 高聚林, 等. 主要栽培措施对北方春玉米产量贡献的定量评估[J]. 中国农业科学, 2020, 53(15): 3024-3035.
[10] 肖占文, 王多成, 侯梁宇, 等. 河西内陆灌区粮饲通用玉米超高产栽培优化农艺措施研究[J]. 玉米科学, 2021, 29(2): 89-96.
[11] 陶向新, 王伯伦. 作物规范化栽培设计原理与应用[M]. 沈阳: 辽宁大学出版社, 1991
[12] 金 柯, 汪德水, 蔡典雅, 等. 水肥耦合效应研究Ⅱ.不同N、P、水配合对旱地冬小麦产量的影响[J]. 植物营养与肥料学报, 1999, 5(1): 8-13.
[13] 浙江农业大学. 植物营养与肥料[M]. 北京: 中国农业出版社, 1988.
[14] 郭世乾, 崔增团, 师伟杰, 等. 氮、磷、钾及其配施对制种玉米养分吸收利用的影响[J]. 干旱地区农业研究, 2020, 38(2): 221-226.
[15] 申丽霞, 王 璞, 兰林旺, 等.种植密度和施氮量对夏玉米物质生产及氮素利用的影响[J]. 华北农学报, 2007, 22(1): 137-140.
[16] 孔令中, 孟 瑶, 顾万荣, 等. 东北超高密度种植下氮肥对春玉米光合、氮代谢及产量的影响[J]. 西南农业学报, 2020, 28(3): 1020-1026.
[17] 王 勇, 索东让, 孙宁科. 制种玉米需肥规律的研究[J]. 农学学报, 2012, 2(8): 37-43.
[18] 索东让, 李 隆, 孙宁科, 等. 河西走廊制种田与生产田玉米需肥特点比较[J]. 植物营养与肥料学报, 2013, 19(4): 816-823.
[19] 孙宁科, 李 隆, 索东让, 等. 河西走廊制种玉米氮磷钾适宜用量及需肥进程[J]. 西北农业学报, 2013, 22(9): 95-100.
[20] 赵建华, 樊廷录, 王淑英, 等.施氮与灌水对河西制种玉米产量及水氮利用效率的影响[J]. 核农学报, 2016, 30(5): 997-1007.
[21] 连彩云,马忠明.水肥用量对制种玉米水肥利用及种子活力的影响[J].旱地区农业研究, 2021, 39(1): 128-135.