第一论文网免费提供农学毕业论文论文范文,农学毕业论文论文格式模板下载

锰掺杂硫化锌量子点室温磷光检测镉离子

  • 投稿五更
  • 更新时间2015-09-22
  • 阅读量694次
  • 评分4
  • 57
  • 0

赵 磊,苗艳明,李瑜婷,连林旺,闫桂琴

(山西师范大学生命科学学院,山西 临汾 041004)

摘要:作为一类理想的磷光探针,量子点近年来在环境污染物定性定量分析方面应用广泛。量子点是半径小于或接近于激子玻尔半径的一类半导体纳米晶。以巯基丙酸(MPA)为表面修饰剂制备了稳定的水溶性掺杂型ZnS∶Mn2+量子点并应用于金属Cd2+的检测。在pH 7.0的PBS缓冲介质中,Cd2+可使ZnS∶Mn2+体系磷光猝灭,强度变化与Cd2+浓度呈良好线性关系,其线性范围为8×10-8~8×10-6 mol/L,方法检测下限为3.86×10-8 mol/L;利用荧光光谱、紫外可见吸收光谱研究了ZnS:Mn2+纳米晶结构及其光谱特性,探讨了识别Cd2+的可能机理。该方法应用于汾河水中Cd2+的检测,回收率为93.2%~97.1%。

教育期刊网 http://www.jyqkw.com
关键词 :量子点;室温磷光检测(RTP);镉离子

中图分类号:O657.3 文献标识码:A 文章编号:0439-8114(2015)16-4033-05

DOI:10.14088/j.cnki.issn0439-8114.2015.16.052

收稿日期:2014-9-10

基金项目:山西省化学优势重点学科建设项目(912019)

作者简介:赵 磊(1989-),男,山西太原人,在读硕士研究生,研究方向为生态化学,(电话)15835780799(电子信箱)shitou890410@126.com;

通信作者,闫桂琴(1956-),教授,博士,主要从事植物分子生态学研究,(电话)13513652319(电子信箱)gqyan@126.com。

量子点(Quantum dots,QDs) 即半径小于或接近于激子玻尔半径的半导体纳米晶粒,是一种零维的纳米材料,尺寸在纳米级的金属或半导体材料的细小颗粒,尺寸范围为1~100 nm。量子点具有许多块体材料和分子级别材料所不具备的性质,如:量子尺寸效应、表面效应、宏观量子隧道效应和介电限域效应等,并由此派生出量子点独特的发光特性。与传统的有机染料相比,量子点具有宽而连续的激发光谱、窄而对称的发射光谱、可精确调谐的发射波长(通过控制粒径来调整发射波长)、可忽略的光漂白等优良特性,使得其作为一种理想的磷光探针,在生物标记、成像及检测中应用广泛[1-8],目前将量子点用于检测离子[9-11],生物大分子[12-15]与小分子[16-18]正成为研究热点。室温磷光法较之荧光分析法,磷光寿命比荧光长,可避免自体荧光和散射光的干扰,且磷光的选择性优于荧光[19-25]。因此,可采用量子点的磷光特性开展检测技术研究[26]。

镉是一种广泛分布于环境中的重金属元素[27],采矿、冶炼、化石燃料等都会导致环境中的镉积累,并进入人类食物链[28],导致肾功能不全,钙代谢异常以及引发癌症[29]。而加强检测环境样品,工业废物排放和组织样本中的镉含量,将有利于控制人类镉的暴露水平。目前检测Cd2+的主要方法有原子光谱法[30]、电化学方法[31]、毛细管电泳法[32]、电感耦合等离子体质谱法[33]、分光光度法和荧光光谱法[34]等。本试验通过制备水溶性掺杂型ZnS∶Mn2+量子点,初步分析了对Cd2+的检测参数,以期为开发相关快速检测方法提供参考

1 材料与方法

1.1 材料和试剂

巯基丙酸(SPA)(北京百灵威科技有限公司),Zn(CH3COO)2·2H2O,Mn(CH3COO)2·4H2O,Cd(NO3)2,Na2S·9H2O(天津市科密欧化学试剂有限公司)均为分析纯,去离子水。

1.2 主要仪器

JSM-7500F透射电镜(JEOL,日本),UV-29100型分光光度计(日立,日本)紫外-可见分光光度计,Cary Eclipse荧光分光光度计(瓦里安, 美国),pH计(金鹏分析仪器有限公司)。

1.3 方法

1.3.1 Mn掺杂ZnS量子点的合成 取100 mL三口烧瓶,依次加入50 mL 0.04 mol/L巯基丙酸,5 mL 0.1 mol/L的Zn(CH3COO)2和2 mL 0.01 mol/L的Mn(CH3COO)2,混合后在室温下通氩气,用1 mol/L的NaOH调节pH至11后,搅拌30 min,然后快速注射0.1 mol/L的Na2S 5 mL,迅速搅拌20 min后,于50 ℃陈化2 h形成巯基丙酸包裹的Mn,最后通过与相同体积的乙醇沉淀进行离心纯化,在室温真空下干燥,得到高水溶性的量子点粉末[35],待用。

1.3.2 测量 在295 nm激发波长的磷光模式下,激发和发射狭缝宽度分别为10 nm和20 nm,在一系列10 mL比色管中,依次加入500 μL 0.02 mol/L的PBS缓冲液(pH=7.0),50 μL 2 mg/mL的上述量子点溶液,然后加入相同浓度不同体积的Cd2+水溶液,并以去离子水定容至5 mL,静置5 min后测定3次。

2 结果与分析

2.1 量子点性质分析

制备的水溶性量子点结构式见图1(a),其透射电镜图(b)表明Mn掺杂ZnS量子点具有球形形状,直径约为3.5 nm。其磷光激发和发射峰位于590 nm处。ZnS量子点只有缺陷态发光,而Mn掺杂ZnS量子点会发射磷光,起源于Mn2+的4T1-6A1跃迁[21]。

2.2 Mn掺杂ZnS量子点的RTP分析

Cd2+对Mn掺杂ZnS量子点磷光的影响见图2,结果表明Cd2+对Mn掺杂ZnS量子点的磷光具有猝灭效应。随着Cd2+浓度增加,量子点的RTP强度呈下降趋势,表明该量子点可用于镉离子的RTP探针。在最佳条件下,磷光猝灭强度与镉离子浓度的标准曲线见图3。由图3计算其线性回归方程为ΔP=0.000 4 C+1.010 2,相关系数为0.993 5,连续测定11次不含镉离子和含有0.2 μmol/L镉离子磷光差值的相对标准偏差为1.8%。计算该方法的Cd2+检出限为3.86×10-8 mol/L。

2.3 RTP探针的性质探讨

为鉴定Cd2+在该分析体系中的特异性,分析了体系中的探针磷光特性,结果见图4。由图4可知,Mn掺杂ZnS量子点的磷光发射峰激发于595 nm,在Mn掺杂ZnS量子点体系中添加Cd2+,可显著降低体系磷光强度,且随着Cd2+浓度增加,其荧光强度有规律地降低,即Mn掺杂ZnS量子点可与Cd2+发生相互作用。

紫外-可见光谱分析结果见图5。由图5可知,Mn掺杂ZnS量子点的光强度较低,但加入镉离子后,在量子点表面形成了S-Cd键,增大了整个体系的发光强度[36]。

磷光猝灭过程通常分为动态碎灭(遵从Stem-Voliner方程Eq.1)和静态碎灭(遵从Lineweaver- Burk方程Eq.2)两类[37,38]:

其中,P0代表磷光体磷光强度,P代表加入磷光碎灭剂后体系的磷光强度,cq为碎灭剂Cd2+浓度,Ksv是动态猝灭常数,KLB是静态猝灭常数[39-41]。P0/P和cq的关系不遵循Stern-Volmer方程,而(P0-P)-1与cq的关系符合Lineweaver-Burk方程,说明Cd2+猝灭Mn掺杂ZnS量子点是一个静态猝灭过程(图6),即二者相互作用后产生了非磷光物质。

2.4 检测体系的优化

为优化检测体系,试验研究了pH、反应时间以及NaCl浓度对40 mg/L Mn掺杂ZnS量子点RTP强度的影响。由图7可知,当pH为4.5~9.5时,随着pH增加,量子点RTP强度呈先增后减,并在pH 6~8.5时趋于稳定,考虑普通环境水样pH在7左右,故选择反应体系pH为7。由图8和图9可知量子点在60 min内和高NaCl浓度下,RTP强度基本稳定。

2.5 样品分析

取一定量汾河水,过滤后,采用加标回收法分析,结果见表1。由表1可知,样品回收率达到93%以上,检测相对标准偏差小于6%,初步符合检测分析要求。

3 结论

采用MPA包裹的Mn掺杂ZnS量子点可为快速检测镉离子提供新思路,该法不需复杂的样品预处理,操作简单,且采用的磷光检测体系,可有效避免生物体液的自体荧光和散射光干扰,勿需除氧剂和诱导剂,成本低,是一种简单、快速、经济、灵敏和高选择性的检测水样中镉离子的方法。

教育期刊网 http://www.jyqkw.com
参考文献

[1] GRECCO H E,LIDKE K A,HEINTZMANN R,et al. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells[J]. Microscopy Research and Technique,2004,65(4-5):169-179.

[2] WANG L Y,KAN X W,ZHANG M C,et al. Fluorescence for the determination of protein with functionalized nano-ZnS[J]. Analyst,2002,127(11):1531-1534.

[3] ALIVISATOS A P.Semiconductor clusters,nanocrystals,and quantum dots[J]. Science,1996,271(5251):933-937.

[4] PENG X G,YANG W O,WICKHAM J,et al. Shape control of CdSe nanocrystals[J]. Nature,2000,404:59-61.

[5] PENG X G,WICKHAM J, ALIVISATOS A P.Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth: “Focusing” of size distributions[J]. Journal of the American Chemical Society,1998,120(21):5343-5344.

[6] BRUCHEZ M J,MORONNE M,ALIVISATOS A P,et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science,1998,281(5385):2013-2015.

[7] CHAN W C W, NIE S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science,1998,281(5385): 2016-2018.

[8] LAN G Y,LIN Y W,HUANG Y F,et al. Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solutions[J].Journal of Materials Chemistry,2007,17(25):2661-2666.

[9] JIN W J,FERN NDEZ-ARG ELLES M T,COSTA-FERN NDEZ J M,et al.Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions[J]. Chemical Communications,2005(7):883-885.

[10] FERN NDEZ-ARG ELLES M T,JIN W J,COSTA-FERN NDEZ J M,et al. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements[J]. Analytica Chimica Acta, 2005, 549(1-2): 20-25.

[11] LI H B,ZHANG Y,WANG X Q,et al.Calixarene capped quantum dots as luminescent probes for Hg2+ ions[J]. Materials Letters,2007,61(7):1474-1477.

[12] WANG L Y,WANG L,GAO F,et al.Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acids[J]. Analyst,2002,127(7):977-980.

[13] CHEN X D,DONG Y P,FAN L,et al. Resonance scattering method for the ultrasensitive determination of peptides using semiconductor nanocrystals[J]. Analytica Chimica Acta,2007, 597(2):300-305.

[14] CHEN H Q,WANG L,LIU Y,et al. Preparation of a novel composite particles and its application in the fluorescent detection of proteins[J]. Analytical and Bioanalytical Chemistry, 2006,385(8):1457-1461.

[15] YAO H Q,ZHANG Y,XIAO F,et al. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases[J]. Angewandte Chemie International Edition,2007,46(23):4346-4349.

[16] HUANG C P,LI Y K,CHEN T M.A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots[J]. Biocatalysis and Biotransformation,2007,22(8):1835-1838.

[17] LIANG L G, HUANG S, ZENG D Y, et al. CdSe quantum dots as luminescent probes for spironolactone determination[J]. Talanta,2006,69(1):126-130.

[18] CORDES D B, GAMSEY S, SINGARAM B. Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution[J]. Angewandte Chemie International Edition,2006,45(23):3829-3832

[19] TRAVIESA-ALVAREZ J M, SANCHEZ-BARRAGA N I, COSTA-FERNA NDEZ J M. Room temperature phosphorescence optosensing of benzo[a]pyrene in water using halogenated molecularly imprinted polymers[J]. Analyst,2007,132(3):218-223.

[20] DE MELLO DONEGA C, BOL A A, MEIJERINK A. Time-resolved luminescence of ZnS:Mn2+ nanocrystals[J]. Journal of Luminescence,2002,96(2-4):87-93.

[21] CHUNG J H,AH C S,JANG D J. Formation and distinctive decay times of surface-and lattice-bound Mn2+ impurity luminescence in ZnS nanoparticles[J]. Journal of Physical Chemistry B,2001,105(19):4128-4132.

[22] CHENG B C, WANG Z G. Synthesis and optical properties of europium-doped ZnS: long-lasting phosphorescence from aligned nanowires[J].Advanced Functional Materials,2005,15(11):1883-1890.

[23] OZAWA L, MAKIMURA M, ITOH M. Improved production of ZnS blue phosphor powder[J]. Materials Chemistry and Physics,2005,93(2-3):481-486.

[24] MANOHARAN S S,GOYAL S,RAO M L,et al., Microwave synthesis and characterization of doped ZnS based phosphor materials[J]. Materials Research Bulletin,2001,36(5-6):1039-1047.

[25] CHEN S H,GREEFF A P,SWART H C.A comparative study between the simulated and measured cathodoluminescence generated in ZnS:Cu, Al, Au phosphor powder[J]. Journal of Luminescence,2005,113(3-4):191-198.

[26] THAKAR R,CHEN Y C,SNEE P T. Efficient emission from core/(doped) shell nanoparticles: Applications for chemical sensing[J]. Nano Letters,2007,7(11):3429-3432.

[27] CHANEY R L, RYAN J A, LI Y M, et al. Soil cadmium as a threat to human health[J]. Cadmium in Soils and Plants,1999(85):219-256.

[28] FRIBERG L, ELINGER C G, KJELLSTROM T. Environmental Health Criteria 134[M]. Geneva:World Health Organization,1992.

[29] DOBSON S. Cadmium-Environmental Aspects, Environmental Health Criteria 135[M]. Geneva: World Health Organization, Geneva,1992.

[30] AMORIM FAC, BEZERRA M A. Online preconcentration system for determining ultratrace amounts of Cd in vegetal samples using thermospray flame furnace atomic absorption spectrometry[J]. Microchim Acta,2007,159(1-2):183-189.

[31] LI L, XIA B H, JIANG Z C. Determination of trace Cd and Pb in environmental and biological samples by ETV-ICP-MS after single-drop microextraction[J]. Talanta,2006,70(2):468-473.

[32] QU F, LIN J M, CHEN Z L. Simultaneous separation of nine metal Ions and ammonium with nonaqueous capillary electrophoresis[J].Journal of Chromatography A,2004,1022(1-2):217-221.

[33] SUTEERAPATARANON S, JAKMUNEE J, VANEESORN Y, et al. Exploiting flow injection and sequential injection anodic stripping voltammetric systems for simultaneous determination of some metals[J]. Talanta,2002,58(6):1235-1242.

[34] XUE L, LIU C, JIANG H. Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media[J].Organic Letters,2009,11(7):1655-1658.

[35] ZHUANG J Q, ZHANG X D, WANG G, et al. Synthesis of water-soluble ZnS:Mn2+ nanocrystals by using mercaptopropionic acid as stabilizer[J]. Journal of Materials Chemistry, 2003,13(7):1853-1857.

[36] CHUNG J H, AH C S, JANG D J. Formation and distinctive decay times of surface and lattice bound Mn2+ impurity luminescence in ZnS nanoparticles[J]. Journal of Physical Chemistry B,2001,105(19):4128-4132.

[37] SPANHEL L, HAASE M, WELLER H, et al. Photochemistry of colloidal semieonduetors.20. Surface modification and stability of strong luminescing CdS Particles[J]. Journal of the American Chemical Society,1987,109(19):5649-5655.

[38] SAUER K, SCHEER H, SAUER P. F rster transfer calculations based on crystal structure data from agmenellum quadruplicatum C-phycocyanin[J]. Photochemistry and Photobiology,1987,46(3):427-440.

[39] LAKOWICZ J R, WEBER G. Quenching of fluorescence by oxygen probe for structural fluctuations in macromolecules[J]. Biochemistry,1973,12(21):4161-4170.

[40] JONES R M, BERGSTEDT T S, MCBRANCH D W. Tuning of superquenching in layered and mixed fluorescent polyelectrolytes[J]. Journal of the American Chemical Society,2001, 123(27),6726-6727.

[41] MURPHY C B, ZHANG Y, TROXLER T, et al. Probing Frster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors[J]. The Journal of Physical Chemistry B, 2004(108): 1537-1543.

[42] BAPTISTA M S, INDIG G L. Effect of BSA binding on photophysical and photochemical properties of triarylmethane dyes[J]. The Journal of Physical Chemistry B,1998,102(23): 4678-4688.