文/许 俊
【摘 要】高中数学课程的学习中,函数模型的学习是一项重要的内容,函数模型对解决学生在数学函数学习过程中的实际问题具有重要意义。因此,加强高中函数概念和初等函数方面的教学策略研究非常重要,本文即以“函数概念与基本初等函数”为例,对高中数学的教学方法和策略分析探讨。
教育期刊网 http://www.jyqkw.com
关键词 高中教学;函数概念;策略;基本初等函数
一、前言
函数在高中数学教学中占据重要地位,也是学生学习数学的难点所在。教师在函数内容教学上要把握宏观上的函数教学策略,建立切实可行的函数教学方法和方式,这对高中阶段学生熟练数学具有很重要的意义。这里,我们以“函数概念与基本初等函数”为例,对高中数学的教学方法和策略分析探讨。
二、在数学教学过程中的问题分析
(一)对概念理解不深刻
学生对于函数的理解仅仅停留在概念层面,并且存在着一定的认识误区,难以在实际解决问题中运用函数思维。
(二)函数应用意识薄弱
对一些数学问题学生们习惯应用方程求解。而遇到变量间的函数存在关系时,学生就无法快速找到问题的关键而无从下手。
(三)缺乏数形结合的基本思想
由于学生欠缺对数形结合思想的基本思想认识,在具体解题时很难做到将数形结合工具运用其中。
三、高中数学函数教学的策略研究
高中教学策略是在教学过程中将教学思想、技术手段和方法模式三方面进行综合,是经过加工的教学思维的方法模式。教学策略和方法是一套付诸教学的方案步骤,能够针对具体的教学目标进行制定,不仅包括了合理的教学过程、方法和材料,还包括教师和学生需要遵守的教学程序。下面,我们针对高中数学函数教学中的函数知识,对教学过程中的策略进行简单的探讨。
(一)学生要充分了解函数基本概念的形成过程
学生必须具备将原有概念认知和新知识融会贯通的能力,形成系统的知识体系。教师必须能够进行科学有效的概念教学,并对以下各方面的信息进行充分的了解:
1.原有概念体系或其他知识体系中与新概念是否存在某种逻辑关系?
2.学生是否已经对该原有概念体系的内容有了充分的了解?
3.学生学习新知识的能力是否能够适应教授的内容?
另外,教师在对高中函数概念进行讲授时,要突出强调函数的相互对应关系,加深了学生对函数概念的理解。
(二)采取正反例证法深化学生对函数概念的理解
数学概念一般应用定义来对事务的本质属性进行说明,但是这种使用数学符号和语言进行表述的方式会造成学生理解上的障碍。因此,函数概念的学习可以通过其他多种措施来加深学生的理解。下面我们使用正反例证法来进行说明:
教师在完成函数的基本概念介绍后,可以通过举正反两方面的例证来举一些肯定例证来强化学生对新知识的记忆,帮助学生了解函数。
(三)灵活运用数形结合的教学方法
在教学过程中,充分利用函数图像的直观性来加强对函数性质的理解,是研究函数教学策略的重要途径。数形结合能够使抽象的数学问题变成直观、生动的画面,对学生把握问题的本质具有重要作用。我们使用下列习题作为示例:
购买x听某饮料需要y元。如果每听2元,尝试使用不同的方法将x表示成y的函数。其中几名学生做出了图一(1)的图形。
这说明了学生的知识体系中还只是认为函数的图像都是连续的,这是因为没有接触到过非连续函数图像所造成的。因此,在平时的教学当中,加强数形结合方式的教学十分必要。
(四)激发学生学习兴趣
在高中数学的学习过程当中,教师要努力提高学生对数学的兴趣,变枯燥为生动,使学生以积极的态度投入到学习中去,提高课堂学习效率。
四、结论
在进行函数教学的过程中,要灵活应用Excel表格的图形工具、几何画板等图像软件,这样能够让学生从具体的图像中对函数的性质进行比较和理解,从而将教育技术和课堂教学联系到一起,这对有效提高课堂的教学质量意义重大。另外,在函数教学过程中,还要加强学生对函数内涵文化的了解,函数蕴含的数学文化对激发学生的学习兴趣具有重要作用。
教育期刊网 http://www.jyqkw.com
参考文献
[1]华开田.浅谈函数教学[J].新课程学习(综合),2010(08)
[2]黄智华.“数形结合”——函数教学之“魂”[J].中小学数学(高中版),2008(04)
[3]朱静.高中函数教学方法及技巧探微[J].中学教学参考,2011(20)
[4]李鸿艳.函数思想在数学解题中的应用[J].中国科技信息,2005(09)
[5]李吉宝.有关函数概念教学的若干问题[J].数学教育学报,2003(02)
(作者单位:江苏省栟茶高级中学)